944 resultados para A disintegrin and metalloprotease domain (ADAM)
Resumo:
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
Resumo:
The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.
Resumo:
Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the β2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediated cell adherence. Mutation of the integrin-like sequence abrogates the dominant negative effect. Amebae expressing the dominant negative mutant are less virulent in an animal model of amebiasis. These results suggest that inside-out signaling via the lectin cytoplasmic domain may control the extracellular adhesive activity of the amebic lectin and provide in vivo demonstration of the lectin’s role in virulence.
Resumo:
Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.
Resumo:
In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM.
Resumo:
The leukocyte integrin, lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18), mediates cell adhesion and signaling in inflammatory and immune responses. To support these functions, LFA-1 must convert from a resting to an activated state that avidly binds its ligands such as intercellular adhesion molecule 1 (ICAM-1). Biochemical and x-ray studies of the Mac-1 (CD11b/CD18) I domain suggest that integrin activation could involve a conformational change of the C-terminal α-helix. We report the use of NMR spectroscopy to identify CD11a I domain residues whose resonances are affected by binding to ICAM-1. We observed two distinct sites in the CD11a I domain that were affected. As expected from previous mutagenesis studies, a cluster of residues localized around the metal ion-dependent adhesion site (MIDAS) was severely perturbed on ICAM-1 binding. A second cluster of residues distal to the MIDAS that included the C-terminal α-helix of the CD11a I domain was also affected. Substitution of residues in the core of this second I domain site resulted in constitutively active LFA-1 binding to ICAM-1. Binding data indicates that none of the 20 substitution mutants we tested at this second site form an essential ICAM-1 binding interface. We also demonstrate that residues in the I domain linker sequences can regulate LFA-1 binding. These results indicate that LFA-1 binding to ICAM-1 is regulated by an I domain allosteric site (IDAS) and that this site is structurally linked to the MIDAS.
Resumo:
Substitutions or deletions of domain II loop residues of Bacillus thuringiensis δ-endotoxin CryIAb were constructed using site-directed mutagenesis techniques to investigate their functional roles in receptor binding and toxicity toward gypsy moth (Lymantria dispar). Substitution of loop 2 residue N372 with Ala or Gly (N372A, N372G) increased the toxicity against gypsy moth larvae 8-fold and enhanced binding affinity to gypsy moth midgut brush border membrane vesicles (BBMV) ≈4-fold. Deletion of N372 (D3), however, substantially reduced toxicity (>21 times) as well as binding affinity, suggesting that residue N372 is involved in receptor binding. Interestingly, a triple mutant, DF-1 (N372A, A282G and L283S), has a 36-fold increase in toxicity to gypsy moth neonates compared with wild-type toxin. The enhanced activity of DF-1 was correlated with higher binding affinity (18-fold) and binding site concentrations. Dissociation binding assays suggested that the off-rate of the BBMV-bound mutant toxins was similar to that of the wild type. However, DF-1 toxin bound 4 times more than the wild-type and N372A toxins, and it was directly correlated with binding affinity and potency. Protein blots of gypsy moth BBMV probed with labeled N372A, DF-1, and CryIAb toxins recognized a common 210-kDa protein, indicating that the increased activity of the mutants was not caused by binding to additional receptor(s). The improved binding affinity of N372A and DF-1 suggest that a shorter side chain at these loops may fit the toxin more efficiently to the binding pockets. These results offer an excellent model system for engineering δ-endotoxins with higher potency and wider spectra of target pests by improving receptor binding interactions.
Resumo:
The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
The G protein β subunit Gβ5 deviates significantly from the other four members of Gβ-subunit family in amino acid sequence and subcellular localization. To detect the protein targets of Gβ5 in vivo, we have isolated a native Gβ5 protein complex from the retinal cytosolic fraction and identified the protein tightly associated with Gβ5 as the regulator of G protein signaling (RGS) protein, RGS7. Here we show that complexes of Gβ5 with RGS proteins can be formed in vitro from the recombinant proteins. The reconstituted Gβ5-RGS dimers are similar to the native retinal complex in their behavior on gel-filtration and cation-exchange chromatographies and can be immunoprecipitated with either anti-Gβ5 or anti-RGS7 antibodies. The specific Gβ5-RGS7 interaction is determined by a distinct domain in RGS that has a striking homology to Gγ subunits. Deletion of this domain prevents the RGS7-Gβ5 binding, although the interaction with Gα is retained. Substitution of the Gγ-like domain of RGS7 with a portion of Gγ1 changes its binding specificity from Gβ5 to Gβ1. The interaction of Gβ5 with RGS7 blocked the binding of RGS7 to the Gα subunit Gαo, indicating that Gβ5 is a specific RGS inhibitor.
Resumo:
The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding. The C-terminal domain adopts a fold similar to eukaryotic Src homology 3 domains, but the functional role of the C-terminal domain in repressor activity is unknown. The solution structure of the C-terminal domain, consisting of residues N130-L226 plus a 13-residue N-terminal extension, has been determined by using NMR spectroscopy. Residues before A147 are highly mobile and adopt a random coil conformation, but residues A147-L226 form a single structured domain consisting of five β-strands and three helices arranged into a partially orthogonal, two-sheet β-barrel, similar to the structure observed in the crystalline Co2+ complex of full-length DtxR. Chemical shift perturbation studies demonstrate that a proline-rich peptide corresponding to residues R125-G139 of intact DtxR binds to the C-terminal domain in a pocket formed by residues in β-strands 2, 3, and 5, and helix 3. Binding of the proline-rich peptide by the C-terminal domain of DtxR presents an example of peptide binding by a prokaryotic Src homology 3-like protein. The results of this study, combined with previous x-ray studies of intact DtxR, provide insights into a possible biological function of the C-terminal domain in regulating repressor activity.
Resumo:
Many eubacterial DNA polymerases are bifunctional molecules having both polymerization (P) and 5′ nuclease (N) activities, which are contained in separable domains. We previously showed that the DNA polymerase I of Thermus aquaticus (TaqNP) endonucleolytically cleaves DNA substrates, releasing unpaired 5′ arms of bifurcated duplexes. Here, we compare the substrate specificities of TaqNP and the isolated 5′ nuclease domain of this enzyme, TaqN. Both enzymes are significantly activated by primer oligonucleotides that are hybridized to the 3′ arm of the bifurcation; optimal stimulation requires overlap of the 3′ terminal nucleotide of the primer with the terminal base pair of the duplex, but the terminal nucleotide need not hybridize to the complementary strand in the substrate. In the presence of Mn2+ ions, TaqN can cleave both RNA and circular DNA at structural bifurcations. Certain anti-TaqNP mAbs block cleavage by one or both enzymes, whereas others can stimulate cleavage of nonoptimal substrates.
Resumo:
Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.
Resumo:
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.
Resumo:
Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using 3H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1–GDP, but binds to the transitory Sec7d–ARF1–GDP complex and stabilizes it. Two pairs of residues at positions 190–191 and 198–208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1–GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1–GDP and a surface encompassing residues 190–208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1–GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.