945 resultados para 989.2:37


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary Objectives - Describe and quantify the present strength and variability of the circulation and oceanic processes of the Nordic Seas regions using primarily observations of the long term spread of a tracer purposefully released into the Greenland Sea Gyre in 1996. - Improve our understanding of ocean processes critical to the thermaholine circulation in the Nordic Seas regions so as to be able to predict how this region may respond to climate change. - Assess the role of mixing and ageing of water masses on the carbon transport and the role of the thermohaline circulation in carbon storage using water transports and mixing coefficients derived from the tracer distribution. Specific Objectives Perform annual hydrographic, chemical and SF6 tracer surveys into the Nordic regions in order to: - Measure lateral and diapycnal mixing rates in the Greenland Sea Gyre and in the surrounding regions. - Document the depth and rates of convective mixing in the Greenland Sea using the SF6 and the water masses characteristics. - Measure the transit time and transport of water from the Greenland Sea to surrounding seas and outflows. Document processes of water mass transformation and entrainment occurring to water emanating from the central Greenland Sea. - Measure diapycnal mixing rates in the bottom and margins of the Greenland Sea basin using the SF6 signal observed there. Quantify the potential role of bottom boundary-layer mixing in the ventilation of the Greenland Sea Deep Water in absence of deep convection. Monitor the variability of the entrainment of water from the Greenland Sea using time series auto-sampler moorings at strategic positions i.e., sill of the Denmark Strait, Labrador Sea, Jan Mayen fracture zone and Fram Strait. Relate the observed variability of the tracer signal in the outflows to convection events in the Greenland Sea and local wind stress events. Obtain a better description of deepwater overflow and entrainment processes in the Denmark Strait and Faeroe Bank Channel overflows and use these to improve modelling of deepwater overflows. Monitor the tracer invasion into the North Atlantic using opportunistic SF6 measurements from other cruises: we anticipate that a number of oceanographic cruises will take place in the north-east Atlantic and the Labrador Sea. It should be possible to get samples from some cruises for SF6 measurements. Use process models to describe the spread of the tracer to achieve better parameterisation for three-dimensional models. One reason that these are so resistant to prediction is that our best ocean models are as yet some distance from being good enough, to predict climate and climate change.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of abyssal peridotites (Johnson et al., 1990, doi:10.1029/JB095iB03p02661), mid-ocean-ridge basalts (MORBs) (McKenzie, 1985, doi:10.1016/0012-821X(85)90001-9) and their entrained melt inclusions (Sobolev and Shimizu, 1993, doi:10.1038/363151a0; Humler and Whitechurch, 1988, doi:10.1016/0012-821X(88)90055-6) have shown that fractional melting of the upwelling sub-oceanic mantle produces magmas with a much wider range of compositions than erupted MORBs. In particular, it seems that strongly depleted primary magmas are routinely produced by melting beneath ridges (Johnson et al., 1990, doi:10.1029/JB095iB03p02661). The absence of strongly depleted melts as erupted lavas prompts the question of how long such magmas survive beneath ridges, before their distinctive compositions are concealed by mixing with more enriched magmas. Here we report mineral compositions from a unique suite of oceanic cumulates recovered from DSDP Site 334 (Aumento et al., doi:10.2973/dsdp.proc.37.1977), which indicate that the rocks crystallized from basaltic liquids that were strongly depleted in Na, Ti, Zr, Y, Sr and rare-earth elements relative to any erupted MORB. It thus appears that the magmatic plumbing system beneath the Mid-Atlantic Ridge permitted strongly depleted magmas to accumulate in a magma chamber and remain sufficiently isolated to produce cumulate rocks. Even so, spatial heterogeneity in the compositions of high-calcium pyroxenes suggests that in the later stages of solidification these rocks reacted with infiltrating enriched basaltic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid biomarker records from sinking particles collected by sediment traps are excellent tools to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices UK'37 based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m/d) than for GDGTs (9-17 m/d). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the UK'37 index faithfully record observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained with either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters carrying GDGTs in a distribution that translates to a high TEX86 signal.