984 resultados para 5 ray gr.
Resumo:
As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.
Resumo:
From 0 to 277 m at Site 530 are found Holocene to Miocene diatom ooze, nannofossil ooze, marl, clay, and debrisflow deposits; from 277 to 467 m are Miocene to Oligocene mud; from 467 to 1103 m are Eocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, sandstone, and black shale in the lower portion; from 1103 to 1121 m are basalts. In the interval from 0 to 467 m, in Holocene to Oligocene pelagic oozes, marl, clay, debris flows, and mud, velocities are 1.5 to 1.8 km/s; below 200 m velocities increase irregularly with increasing depth. From 0 to 100 m, in Holocene to Pleistocene diatom and nannofossil oozes (excluding debris flows), velocities are approximately equivalent to that of the interstitial seawater, and thus acoustic reflections in the upper 100 m are primarily caused by variations in density and porosity. Below 100 or 200 m, acoustic reflections are caused by variations in both velocity and density. From 100 to 467 m, in Miocene-Oligocene nannofossil ooze, clay, marl, debris flows, and mud, acoustic anisotropy irregularly increases to 10%, with 2 to 5% being typical. From 467 to 1103 m in Paleocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, and black shale in the lower portion of the hole, velocities range from 1.6 to 5.48 km/s, and acoustic anisotropies are as great as 47% (1.0 km/s) faster horizontally. Mudstone and uncemented sandstone have anisotropies which irregularly increase with increasing depth from 5 to 10% (0.2 km/s). Calcareous mudstones have the greatest anisotropies, typically 35% (0.6 km/s). Below 1103 m, basalt velocities ranged from 4.68 to 4.98 km/s. A typical value is about 4.8 km/s. In situ velocities are calculated from velocity data obtained in the laboratory. These are corrected for in situ temperature, hydrostatic pressure, and porosity rebound (expansion when the overburden pressure is released). These corrections do not include rigidity variations caused by overburden pressures. These corrections affect semiconsolidated sedimentary rocks the most (up to 0.25 km/s faster). These laboratory velocities appear to be greater than the velocities from the sonic log. Reflection coefficients derived from the laboratory data, in general, agree with the major features on the seismic profiles. These indicate more potential reflectors than indicated from the reflection coefficients derived using the Gearhart-Owen Sonic Log from 625 to 940 m, because the Sonic Log data average thin beds. Porosity-density data versus depth for mud, mudstone, and pelagic oozes agree with data for similar sediments as summarized in Hamilton (1976). At depths of about 400 m and about 850 m are zones of relatively higher porosity mudstones, which may suggest anomalously high pore pressure; however, they are more probably caused by variations in grain-size distribution and lithology. Electrical resistivity (horizontal) from 625 to 950 m ranged from about 1.0 to 4.0 ohm-m, in Maestrichtian to Santonian- Coniacian mudstone, marlstone, chalk, clastic limestone, and sandstone. An interstitial-water resistivity curve did not indicate any unexpected lithology or unusual fluid or gas in the pores of the rock. These logs were above the black shale beds. From 0 to 100 m at Sites 530 and 532, the vane shear strength on undisturbed samples of Holocene-Pleistocene diatom and nannofossil ooze uniformly increases from about 80 g/cm**2 to about 800 g/cm**2. From 100 to 300 m, vane shear strength of Pleistocene-Miocene nannofossil ooze, clay, and marl are irregular versus depth with a range of 500 to 2300 g/cm**2; and at Site 532 the vane shear strength appears to decrease irregularly and slightly with increasing depth (gassy zone). Vane shear strength values of gassy samples may not be valid, for the samples may be disturbed as gas evolves, and the sediments may not be gassy at in situ depths.