894 resultados para 4point light 10W with miniature Wenner-Array


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, we demonstrate a template-free and eco-friendly strategy to synthesize hierarchical Ag3PO4 microcrystals with sharp corners and edges via silver–ammine complex at room temperature. The as-synthesized hierarchical Ag3PO4 microcrystals were characterized by X-ray diffraction, field-emission scanning electron microscope (FESEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), BET surface area analyzer, and photoluminescence analysis (PL). Our results clearly indicated that the as-synthesized Ag3PO4 microcrystals possess a hierarchical structure with sharp corners and edges. More attractively, the adsorption ability and visible light photocatalytic activity of the as-synthesized hierarchical Ag3PO4 is much higher than that of conventional Ag3PO4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein we demonstrate a facile, reproducible, and template-free strategy to prepare g-C3N4–Fe3O4 nanocomposites by an in situ growth mechanism. The results indicate that monodisperse Fe3O4 nanoparticles with diameters as small as 8 nm are uniformly deposited on g-C3N4 sheets, and as a result, aggregation of the Fe3O4 nanoparticles is effectively prevented. The as-prepared g-C3N4–Fe3O4 nanocomposites exhibit significantly enhanced photocatalytic activity for the degradation of rhodamine B under visible-light irradiation. Interestingly, the g-C3N4–Fe3O4 nanocomposites showed good recyclability without loss of apparent photocatalytic activity even after six cycles, and more importantly, g-C3N4–Fe3O4 could be recovered magnetically. The high performance of the g-C3N4–Fe3O4 photocatalysts is due to a synergistic effect including the large surface-exposure area, high visible-light-absorption efficiency, and enhanced charge-separation properties. In addition, the superparamagnetic behavior of the as-prepared g-C3N4–Fe3O4 nanocomposites also makes them promising candidates for applications in the fields of lithium storage capacity and bionanotechnology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the degree of conversion (DC%) of one experimental and different brands of composite resins light-cured by two light sources (one LED and one argon laser). The percentage of unreacted C = C was determined from the ratio of absorbance intensities of aliphatic C = C (peak at 1637 cm−1) against internal standards before and after curing: aromatic C–C (peak at 1610 cm−1) except for P90, where %C = C bonds was given for C–O–C (883 cm−1) and C–C (1257 cm−1). ANOVA and Tukey’s test revealed no statistically significant difference among Z350 (67.17), Z250 (69.52) and experimental (66.61 ± 2.03) with LED, just among them and Evolu-X (75.51) and P90 (32.05) that showed higher and lower DC%, respectively. For the argon laser, there were no differences among Z250 (70.67), Z350 (69.60), experimental (65.66) and Evolu-X (73, 37), however a significant difference was observed for P90 (36.80), which showed lowest DC%. The light sources showed similar DC%, however the main difference was observed regarding the composite resins. The lowest DC% was observed for the argon laser. P90 showed the lowest DC% for both light-curing sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the compressive strength of microhybrid (FiltekTM Z250) and nanofilled (FiltekTM Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm−2 when using the fiber optic light tip and 596 mW cm−2 with the polymer. After storage in distilled water at 37 ± 2 "C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min−1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Creation of miniature optical delay lines and buffers is one of the greatest challenges of the modern photonics which can revolutionize optical communications and computing. Several remarkable designs of slow light optical delay lines employing coupled ring resonators and photonic crystal waveguides has been suggested and experimentally demonstrated. However, the insertion loss of these devices is too large for their practical applications. Alternatively, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics (SNAP) allows us to fabricate record small delay lines with unprecedentedly small dispersion and low loss. In this report, we review the recent progress in fabrication and design of miniature slow light devices and buffers, in particular, those based on the SNAP technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Miniature planar waveguide and fiber-based delay lines and buffers including slow light resonant structures and devices are reviewed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on conical refraction (CR) experiments with low-coherent light sources such as light-emitting diodes (LEDs) that demonstrated different CR patterns. The change of a pinhole size from 25 to 100 μm reduced the spatial coherence of the LED radiation and resulted in the disappearance of the dark Poggendorf ring in the Lloyd's plane. This is attributed to the interference nature of the Lloyd's distribution and is found to be in excellent agreement with the paraxial dual-cone model of CR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cs atom beams, transversely collimated and cooled, passing through material masks in the form of arrays of reactive-ion-etched hollow Si pyramidal tips and optical masks formed by intense standing light waves, write submicron features on self-assembled monolayers (SAMs). Features with widths as narrow as 43 ± 6 nm and spatial resolution limited only by the grain boundaries of the substrate have been realized in SAMs of alkanethiols. The material masks write two-dimensional arrays of submicron holes; the optical masks result in parallel lines spaced by half the optical wavelength. Both types of feature are written to the substrate by exposure of the masked SAM to the Cs flux and a subsequent wet chemical etch. For the arrays of pyramidal tips, acting as passive shadow masks, the resolution and size of the resultant feature depends on the distance of the mask array from the SAM, an effect caused by the residual divergence of the Cs atom beam. The standing wave optical mask acts as an array of microlenses focusing the atom flux onto the substrate. Atom 'pencils' writing on SAMs have the potential to create arbitrary submicron figures in massively parallel arrays. The smallest features and highest resolutions were realized with SAMs grown on smooth, sputtered gold substrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Game is On! is a series of short animated films that put copyright and creativity under the magnifying glass of Sherlock Holmes, providing a unique, research-led and open access resource for school-aged learners and other creative users of copyright. Drawing inspiration from well-known copyright and public domain work, as well as recent copyright litigation, these films provide a springboard for exploring key principles and ideas underpinning copyright law, creativity, and the limits of lawful appropriation and reuse.

Each episode comes accompanied by a number of related Case Files: supplementary educational materials aimed at suggesting points of discussion about copyright for teachers and students.