986 resultados para 3D accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3-D model of a superconducting staggered array undulator has been built, which could serve as a powerful tool to solve electromagnetic problems and to realize field optimization of such design. Given the limitation of 2-D simulation for irregular shapes and complex geometries, 3-D models are more desirable for a comprehensive investigation. An optimization method for the undulator peak field is proposed; up to 32% enhancement can be achieved by introducing major segment bulks. Some improvements of the undulator design are obtained by careful analyzing of the simulation results. © 2002-2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2012 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel, three-dimensional, single-pile model, formulated in the wavenumber domain and adapted to account for boundary conditions using the superposition of loading cases. The pile is modelled as a column in axial vibration, and a Euler-Bernoulli beam in lateral vibration. The surrounding soil is treated as a viscoelastic continuum. The response of the pile is presented in terms of the stiffness and damping coefficients, and also the magnitude and phase of the pile-head frequency-response function. Comparison with existing models shows that excellent agreement is observed between this model, a boundary-element formulation, and an elastic-continuum-type formulation. This three-dimensional model has an accuracy equivalent to a 3D boundary-element model, and a runtime similar to a 2D plane-strain analytical model. Analysis of the response of the single pile illustrates a difference in axial and lateral vibration behaviour; the displacement along the pile is relatively invariant under axial loads, but in lateral vibration the pile exhibits localised deformations. This implies that a plane-strain assumption is valid for axial loadings and only at higher frequencies for lateral loadings. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technology called capillary forming enables transformation of vertically aligned nanoscale filaments into complex three-dimensional microarchitectures. We demonstrate capillary forming of carbon nanotubes into diverse forms having intricate bends, twists, and multidirectional textures. In addition to their novel geometries, these structures have mechanical stiffness exceeding that of microfabrication polymers, and can be used as masters for replica molding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary forming of carbon nanotubes (CNTs) enables the fabrication of unique 3D microstructures over large areas. In this paper we focus on the simulation as well as on the integration of these structures in MEMS devices. We developed finite element models (FEM) that enables qualitative prediction of shape transformations caused by capillary forming; and show how capillary formed CNT structured can be integrated with conventional lithographic processing for patterning of polymers and metals in concert with CNTs. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D (Grundmann et al.; 2000). Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module. Although the upgraded BGCore system is capable of performing both, depletion and TH analyses, the calculations in this study were performed for the beginning of cycle state with pre-generated fuel compositions. © 2011 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador: