1000 resultados para 360299 Policy and Administration not elsewhere classified
Resumo:
Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.
Resumo:
One of the challenges for software engineering is collecting meaningful data from industrial projects. Software process improvement depends on measurement to provide baseline status and confirming evidence of the effect of process changes. Without data, any conclusions rely on intuition and guessing. The Team Software ProcessSM (TSPSM) provides a powerful framework for data collection and analysis, in addition to its primary goal as a basis for highly effective software development. In this paper, we describe the experiences of, and benefits realized by, a team using the TSP for the first time. By reviewing how this particular team collected and used data, we show features of the TSP that make it a powerful foundation for software process improvement.
Resumo:
We discuss how integrity consistency constraints between different UML models can be precisely defined at a language level. In doing so, we introduce a formal object-oriented metamodeling approach. In the approach, integrity consistency constraints between UML models are defined in terms of invariants of the UML model elements used to define the models at the language-level. Adopting a formal approach, constraints are formally defined using Object-Z. We demonstrate how integrity consistency constraints for UML models can be precisely defined at the language-level and once completed, the formal description of the consistency constraints will be a precise reference of checking consistency of UML models as well as for tool development.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.
Resumo:
A framework is a reusable design that requires software components to function. To instantiate a framework, a software engineer must provide the software components required by the framework. To do this effectively, the framework-component interfaces must be specified so the software engineer knows what assumptions the framework makes about the components, and so the components can be verified against these assumptions. This paper presents an approach to specifying software frameworks. The approach involves the specification of the framework’s syntax, semantics, and the interfaces between the framework and its components. The approach is demonstrated with a simple case study.
Resumo:
Summary form only given. The Java programming language supports concurrency. Concurrent programs are harder to verify than their sequential counterparts due to their inherent nondeterminism and a number of specific concurrency problems such as interference and deadlock. In previous work, we proposed a method for verifying concurrent Java components based on a mix of code inspection, static analysis tools, and the ConAn testing tool. The method was derived from an analysis of concurrency failures in Java components, but was not applied in practice. In this paper, we explore the method by applying it to an implementation of the well-known readers-writers problem and a number of mutants of that implementation. We only apply it to a single, well-known example, and so we do not attempt to draw any general conclusions about the applicability or effectiveness of the method. However, the exploration does point out several strengths and weaknesses in the method, which enable us to fine-tune the method before we carry out a more formal evaluation on other, more realistic components.
Resumo:
"Totally functional programming" (TFP) advocates the complete replacement of symbolic representations for data by functions. TFP is motivated by observations from practice in language extensibility and functional programming. Its technical essence extends the role of "fold" functions in structuring functional programs to include methods that make comparisons on elements of data structures. The obstacles that currently prevent the immediate uptake of TFP as a style within functional programming equally indicate future research directions in the areas of theoretical foundations, supporting technical infrastructure, demonstrated practical applicability, and relationship to OOP.