996 resultados para 350
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).
Resumo:
RE3+-activated alpha- and beta-CaAl2B2O7 (RE = Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151 +/- 2 and 159 +/- 3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.
Resumo:
Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.
Resumo:
Narrowed spectra at 452 nm from a thin platelike crystal of distyrylbenzene derivative, 2,5-diphenyl-1,4-distyrylbenzene with two trans double bonds (trans-DPDSB) grown by vapor deposition, are observed. The trans-DPDSB crystal is irradiated by the third harmonic (355 nm) of a Nd:YAG laser. The FWHM of the narrowed spectra can reach 6 nm for the crystal when the pumping energy is 400 mu J/pulse. The threshold value for an optically pumped laser is approximately 350 mu J/pulse.
Resumo:
An oligomer from 4, 4'-bis(maleimido)diphenyl methane and methylenedianiline were dissolved in active solvent N,N-dimethyl acrylamide in a solid content up to 50-70%; the solution was poured in a sheet-shaped module and irradiated b y Co-60 with the dose from 20 to 350 kGy at room temperature. The polymerized sheet was postcured at 180degreesC to obtain a transparent red-orange sheet with tensile strength above 100 MPa. The glass transition temperature before and after postcuring was around 100degreesC and 150-180degreesC, respectively. Styrene was used along with DMAA to decrease the water absorption for the copolymers.
Resumo:
X-2-y(2)SiO(5):A (A = Eu3+, Tb3+, Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 degreesC with X-1-Y2SiO5, which transformed completely to X-2-Y2SiO5 at 1250 degreesC. Patterned thin films with different band widths (5 pin spaced by 5 pm and 16 pm spaced by 24 pm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpattemed phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 run. The doped rare earth ions (A) showed their characteristic emissions in X-2-Y2SiO5 phosphor films, i.e., D-5(0)-F-7(J) (J = 0, 1, 2,3,4) for Eu3+, D-5(3), (4)-F-7(J) (J = 6, 5, 4, 3) for Tb3+ and 5d (D-2)-4f (F-2(2/5),(2/7)) for Ce3+, respectively. The optimum doping concentrations for EU3+, Tb3+ were determined to be 13 and 8 mol% of Y3+ in X-2-Y2SiO5 films, respectively.
Resumo:
Lanthanide-doped sol-gel-derived materials are an attractive type of luminescent materials that can be processed at ambient temperatures. However, the solubility of the lanthanide complexes in the matrix is a problem and it is difficult to obtain a uniform distribution of the complexes. Fortunately, these problems can be solved by covalently linking the lanthanide complex to the sol-gel-derived matrix. In this study, luminescent Eu3+ and Tb3+ bipyridine complexes were immobilized on sol-gel-derived silica. FT-IR, DTA-TG and luminescence spectra, as well as luminescence decay analysis, were used to characterize the obtained hybrid materials. The organic groups from the bipyridine-Si moiety were mostly destroyed between 220 and 600 degreesC. The luminescence properties of lanthanide bipyridine complexes anchored to the backbone of the silica network and the corresponding pure complexes were comparatively investigated, which indicates that the lanthanide bipyridine complex was formed during the hydrolysis and co-condensation of TEOS and modified bipyridine. Excitation at the ligand absorption wavelength (336 nm for the hybrid materials and 350 nm for the pure complexes) resulted in strong emission of the lanthanide ions: Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) emission lines due to efficient energy transfer from the ligands to the lanthanide ions.
Resumo:
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a 'model drug'. These copolymers were synthesized from poly (ethylene glycol) (PEG) and L-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(L-lactide) (PLLA) block lengths (15-280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2x10(5) to 1.9x10(5) on the PLLA content in the copolymer and on the micelle configuration was also discussed.
Resumo:
A novel diamine, 3,3'-bis(N-aminophthalimide) (BAPI), was prepared from 3,3'-bis(N-phenylphthalimide). Its structure was determined via IR, H-1 NMR, N-15 NMR, elemental analysis, and single-crystal X-ray diffraction analysis. A series of homo- and copolyimides were synthesized by a conventional one-step method in p-chlorophenol. The characteristic IR absorption bands of hydrazine-based imide groups were near 1780, 1750, 1350, 1100, and 730 cm(-1). The polymers showed good solubility in polar aprotic solvents and phenols at room temperature. The temperatures of 5% weight loss (T-5%) of the polyimides ranged from 495 to 530 degrees C in air. DMTA analyses indicated that the glass-transition temperatures (Tgs) of the polyimides were in the range 371-432 degrees C. These polymers had cutoff wavelengths between 350 and 400 nm. The polyimide films of 6FDA/BAPI and 4,4'-HQPDA/BAPI were colorless; other films were pale yellow or yellow.
Resumo:
2,7-Bis(9-ethylcarbazol-3-yl)-9,9-di(2-ethylhexyl)fluorene and a segmented copolymer composed of the same chromophores alternated with hexamethylene fragments were synthesized. The obtained materials possess good solubility in common organic solvents, high thermal stability with 1% weight loss temperature of 350-370 degrees C, and suitable glass transition temperatures. Both derivatives show blue fluorescence in dilute solutions as well as in solid state, demonstrating that excimers are not formed in the thin films. The fluorescence spectra of the materials do not show any peaks in the long-wavelength region even after annealing at 200 degrees C in air. An organic LED with the configuration of ITO/copolymer/Al generates blue electroluminescence with the maximum peak at 416 nm, rather low turn-on voltage (4.0 V), and brightness of about 400 cd/m(2). The heterostructure device based on model derivative emitted stable blue light with low operation voltage (100 cd/m(2) at similar to 11 V) and demonstrated luminescence efficiency of 0.8 cd/A.
Resumo:
Multilayer films containing multiwall carbon nanotubes and redox polymer were successfully fabricated on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method. UV-vis spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and electrochemical method were used to characterize the assembled multilayer films. The multilayer films modified electrodes exhibited good electrocatalytic activity towards the oxidation of ascorbic acid (AA). Compared with the bare electrode, the oxidation peak potential negatively shifted about 350 mV (versus Ag/AgCl). Furthermore, the modified screen-printed carbon electrodes (SPCEs) could be used for the determination of ascorbic acid in real samples.
Resumo:
Four new iridium(III) complexes 1-4, with 1,3,4-oxadiazole derivative as cyclometalated ligand for the first time, have been synthesized and structurally characterized by NMR, EA, MS and X-ray diffraction analysis (except 1). The stronger ligand field strength of the dithiolate ancillary ligands results in higher oxidation potentials and lower HOMO energy levels of complexes than acetylacetone. The absorption spectra of these complexes display low-energy metal-to-ligand charge transfer transition ranging from 350 to 500 nm. Complexes with dithiolate ancillary ligand emit at maximum wavelengths of ca. 500 nm, blue shifting 17 and 11 nm with respect to their counterpart with acetylacetone ligand. The electrophosphorescent devices with 2-4 as phosphorescent dopant in emitting layer have been fabricated. All devices have a low turn-on voltage in the range of 4.5 and 4.9 V. A high-efficiency green emission with maximum luminous efficiency of 5.28 cd/A at current density of 1.37 mA/cm(2) and a maximum brightness of 2592 cd/m(2) at 15.2 V has been achieved in device using 2 as emitter.
Resumo:
间歇式生长的结构不连续环带球晶机理直到最近在少数结晶/非晶聚合物共混物研究中才获得直接实验证据的支持[1,2].最近研究聚醚醚酮/液晶聚芳醚酮共混体系(实质是结晶/结晶体系)相行为时观察到,特殊环带球晶的形成也是间歇式晶体生长引起的结构不连续的结果[3,4].但要证明结构不连续环带球晶不是个别现象,而是普遍存在于聚合物中,还需要做广泛的研究工作和大量的实验.本文通过研究含氯侧基液晶聚芳醚酮/含甲基苯侧基聚芳醚酮共混体系(结晶/非晶)环带球晶的形态演变和发展过程;利用选择性溶剂刻蚀方法确定共混体系环带球晶的相组成和相结构,探讨了环带球晶的形成机理.1实验部分1.1试剂与仪器五氟苯酚、N,N-二甲基甲酰胺(DMF)和丙酮均为分析纯试剂.瑞士Mettler-Toledo DSC821e示差扫描量热仪,用标准In和Zn校正温度值和热流值,温度范围50~350℃,升温速度10℃/m in,氮气保护,流量100 mL/m in.Linkam TM600热台与CCD系统的Leica DMLP偏光显微镜.日本精工Seiko SPI3800型原子力显微镜,选用奥林帕斯OMCL-AC160TS-W(悬臂长度为160μm,弹力常数...
Resumo:
采用三乙胺为催化剂经过氨基酸羧酸酐单体的开环聚合和脱保护基,制备了高分子量聚L-谷氨酸.实验结果表明,合成的高分子量聚L-谷氨酸黏均分子量控制在70 000~350 000左右.单体和引发剂的摩尔比n(A)/n(I)大于50时,分子量与n(A)/n(I)无关.