965 resultados para 16s Rdna
Resumo:
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.
Resumo:
The hypothesis that the elements of the modern species-rich flora of the Cape Floristic Region (CFR), South Africa, originated more or less simultaneously at the Miocene/Pliocene boundary, in response to the development of a mediterranean climate, has been challenged by numerous molecular dating estimates of Cape floral clades. These studies reveal a more gradual emergence, with the oldest clades originating in the Eocene, but others appearing later, some as recently as the Pliocene. That there are factors which might affect the dates recovered, such as choice of calibration point, analysis method, sampling density and the delimitation of Cape floral clades, suggests a need for further critical evaluation of the age estimates presented to date. In this study, the dates of origin of two Cape floral clades (the legume Crotalarieae p.p. and Podalyrieae) are estimated, constrained by a shared calibration point in a single analysis using an rDNA ITS phylogeny in which 633 taxa are sampled. The results indicate that these two clades arose contemporaneously 44-46 mya, not at the Miocene/Pliocene boundary as had been previously supposed. The contemporaneous origin of these Cape floral clades suggests that additional more inclusive analyses are needed before rejecting the hypothesis that a. single environmental trigger explains the establishment of Cape floral clades. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Myxozoans belonging to the recently described class Malacosporea parasitize freshwater bryozoans during at least part of their life cycle. There are at present only two species described in this class: Buddenbrockia plumatellae and Tetracapsuloides bryosalmonae. The former can exist as vermiform and sac-like stages in bryozoan hosts. The latter, in addition to forming sac-like stages in bryozoans, is the causative agent of salmonid proliferative kidney disease (PKD). We undertook molecular and ultrastructural investigations of new malacosporean material to further resolve malacosporean diversity and systematics. Phylogenetic analyses of 18S rDNA sequences provided evidence for two new putative species belonging to the genus Buddenbrockia, revealing a two-fold increase in the diversity of malacosporeans known to date. One new malacosporean is a vermiform parasite infecting the bryozoan Fredericella sultana and the other occurs as sac-like stages in the rare bryozoan, Lophopus crystallinus. Both bryozoans represent new hosts for the genus Buddenbrockia. Our results have established that the malacosporean which infected F. sultana was not a vermiform stage of T. bryosalmonae, although it was collected from a site endemic for PKD. Ultrastructural investigation of new material of B. plumatellae revealed the presence of numerous external tubes associated with developing polar capsules, confirming that the absence of external tubes should no longer be considered as a character of the class Malacosporea.
Resumo:
Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.
Resumo:
Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.
Resumo:
Archaea, the third domain of life, were long thought to be limited to environmental extremes. However, the discovery of archaeal 16S rRNA gene sequences in water, sediment and soil samples has called into question the notion of Archaea as obligate extremophiles. Until now none of these novel Archaea has been brought into culture, a critical step for discovering their ecological roles. We have cultivated three novel halophilic Archaea (haloarchaea) genotypes from sediments in which the pore-water salinity was close to that of seawater. All previously reported haloarchaeal isolates are obligate extreme halophiles requiring at least 9% w/v NaCl for growth and are typically the dominant heterotrophic organisms in salt and soda lakes, salt deposits and salterns. Two of these three newly isolated genotypes have lower requirements for salt than previously cultured haloarchaea and are capable of slow growth at seawater salinity (2.5% w/v NaCl). Our data reveal the existence of Archaea that can grow in non-extreme conditions and of a diverse community of haloarchaea existing in coastal salt marsh sediments. Our findings suggest that the ecological range of these physiologically versatile prokaryotes is much wider than previously supposed.
Resumo:
In this study, we carried out an investigation related to the determination of the anisotropy (b) of pores as well as the extent of microporosity (mic%) in various groups of nanostructured mesoporous materials. The mesoporous materials examined were fifteen samples belonging to the following groups of solids: MCM-48s, SBA-15s, SBA-16s, and mesoporous TiO2 anatases. The porosities of those materials were modified either during preparation or afterward by the addition of Cu(II) species and/or 3(5)-(2-pyridinyl) pyrazole (PyPzH) into the pores. The modification of porosity in each group took place to make possible the internal comparison of the b and mic% values within each group. The estimation of both the b and mic% parameters took place from the corresponding nitrogen adsorption-desorption isotherms. The new proposed method is able to detect a percentage of microporosity as low as a few percent, which is impossible by any of the methods used currently, without the use of any reference sample or standard isotherms. A meaningful inverse relationship is apparent between the b and mic% values, indicating that large values of b correspond to small values of mic%.
Resumo:
Formate stimulates growth of a new bacterium from human feces. With high formate, it ferments glucose to acetate via the Wood-Ljungdahl pathway. The original isolate fermented vegetable cellulose and carboxymethylcellulose, but it lost this ability after storage at -76degreesC. 16S rRNA gene sequencing identifies it as a distinct line within the Clostridium coccoides supra-generic rRNA grouping. We propose naming it Bryantella formatexigens gen. nov., sp. nov.
Resumo:
Two Gram-negative, anaerobic, non-spore-forming, rod-shaped organisms were isolated from a swine-manure storage pit. Based on morphological and biochemical criteria, the strains were tentatively identified as belonging to the genus Bacteroides but they did not appear to correspond to any recognized species of the genus. Comparative 16S rRNA gene sequencing studies showed that the strains were related closely to each other and confirmed their placement in the genus Bacteroides, but sequence divergence values of > 10% from reference Bacteroides species demonstrated that the organisms from manure represent a novel species. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from manure be assigned to a novel species of the genus Bacteroides, as Bacteroides coprosuis sp. nov. The type strain is PC139(T) (=CCUG 50528(T)=NRRL B-41113(T)).
Resumo:
Nineteen strains of Gram-positive, non-motile, non-spore-forming, catalase-positive, rod-shaped bacteria isolated from pigs were characterized by using biochemical, molecular chemical and molecular genetic methods. Two distinct groups of organisms were discerned, based on their colonial morphology, CAMP (Christie-Atkins-Munch-Petersen) reaction and numerical profile by using the API Coryne system. The first group (113 strains) gave a doubtful discrimination between Corynebacterium striatum and Corynebacterium amycolatum, whilst the second group (six strains) were identified tentatively as Corynebacterium urealyticum. Comparative 16S rRNA gene sequencing studies demonstrated that all of the isolates belonged phylogenetically to the genus Corynebacterium. The first group of organisms was highly similar to Corynebacterium testudinoris with respect to 16S rRNA gene sequences and physiological characteristics, whereas the remaining six isolates formed a hitherto unknown subline within the genus, associated with a small subcluster of species that included Corynebacterium auriscanis and its close relatives. The unknown Corynebacterium sp. was distinguished readily from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the new isolates from pigs should be classified as a novel species, Corynebacterium suicordis sp. nov. The type strain is P81/02(T) (=CECT 5724(T) =CCUG 46963(T)).
Resumo:
Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T)).
Resumo:
Unusual Gram-negative, catalase- and oxidase-positive, coccus-shaped bacteria isolated from the lungs of two lambs were characterized by phenotypic and molecular-genetic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were genealogically highly related to each other (99.8% sequence similarity) and represent a novel subline within the genus Psychrobacter. The unknown bacterium was phylogenetically closely related to, but distinct from, Psychrobacter phenylpyruvicus, Psychrobacter immobilis, Psychrobacter glacincola and Psychrobacter urativorans. The novel Psychrobacter isolates were readily distinguished from all other Psychrobacter species and other Gram-negative, oxidase-positive bacteria usually responsible for lung infections in sheep by physiological and biochemical tests. Based on molecular-genetic and phenotypic evidence, it is proposed that the unknown Psychrobacter isolates from lambs be classified as Psychrobacterpulmonis sp. nov. The type strain is strain S-606(T) (= CECT 5989(T) = CCUG 46240(T)).
Resumo:
Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.
Resumo:
Aim: The aim of this study was to measure the gastrointestinal survival of Lactobacillus casei and its impact on the gut microflora in healthy human volunteers. Methods and Results: Twenty healthy volunteers took part in a double-blind placebo-controlled probiotic feeding study (10 fed probiotic, 10 fed placebo). The probiotic was delivered in two 65 ml aliquots of fermented milk drink (FMD) daily for 21 days at a dose of 8.6 +/- 0.1 Log(10)Lact. casei CFU ml(-1) FMD. Faecal samples were collected before, during and after FMD or placebo consumption, and important groups of faecal bacteria enumerated by fluorescent in situ hybridization (FISH) using oligonucleotide probes targeting the 16S rRNA. The fed Lact. casei was enumerated using selective nutrient agar and colony identity confirmed by pulsed field gel electrophoresis. Seven days after ingestion of FMD, the Lact. casei was recovered from faecal samples taken from the active treatment group at 7.1 +/- 0.4 Log(10) CFU g(-1) faeces (mean +/- SD, n = 9) and numbers were maintained at this level until day 21. Lact. casei persisted in six volunteers until day 28 at 5.0 +/- 0.9 Log(10) CFU g(-1) faeces (mean +/- SD, n = 6). Numbers of faecal lactobacilli increased significantly upon FMD ingestion. In addition, the numbers of bifidobacteria were higher on days 7 and 21 than on days 0 and 28 in both FMD fed and placebo fed groups. Consumption of Lact. casei had little discernible effect on other bacterial groups enumerated. Conclusions: Daily consumption of FMD enabled a probiotic Lact. casei strain to be maintained in the gastrointestinal tract of volunteers at a stable relatively high population level during the probiotic feeding period. Significance and Impact of the Study: The study has confirmed that this probiotic version of Lact. casei survives well within the human gastrointestinal tract.
Resumo:
The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e.g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.