957 resultados para 13200-028


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Efficiently performed basic life support (BLS) after cardiac arrest is proven to be effective. However, cardiopulmonary resuscitation (CPR) is strenuous and rescuers' performance declines rapidly over time. Audio-visual feedback devices reporting CPR quality may prevent this decline. We aimed to investigate the effect of various CPR feedback devices on CPR quality. METHODS In this open, prospective, randomised, controlled trial we compared three CPR feedback devices (PocketCPR, CPRmeter, iPhone app PocketCPR) with standard BLS without feedback in a simulated scenario. 240 trained medical students performed single rescuer BLS on a manikin for 8min. Effective compression (compressions with correct depth, pressure point and sufficient decompression) as well as compression rate, flow time fraction and ventilation parameters were compared between the four groups. RESULTS Study participants using the PocketCPR performed 17±19% effective compressions compared to 32±28% with CPRmeter, 25±27% with the iPhone app PocketCPR, and 35±30% applying standard BLS (PocketCPR vs. CPRmeter p=0.007, PocketCPR vs. standard BLS p=0.001, others: ns). PocketCPR and CPRmeter prevented a decline in effective compression over time, but overall performance in the PocketCPR group was considerably inferior to standard BLS. Compression depth and rate were within the range recommended in the guidelines in all groups. CONCLUSION While we found differences between the investigated CPR feedback devices, overall BLS quality was suboptimal in all groups. Surprisingly, effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES The intensity of post-egg retrieval pain is underestimated, with few studies examining post-procedural pain and predictors to identify women at risk for severe pain. We evaluated the influence of pre-procedural hormonal levels, ovarian factors, as well as mechanical temporal summation (mTS) as predictors for post-egg retrieval pain in women undergoing in vitro fertilization (IVF). METHODS Eighteen women scheduled for ultrasound-guided egg retrieval under standardized anesthesia and post-procedural analgesia were enrolled. Pre-procedural mTS, questionnaires, clinical data related to anesthesia and the procedure itself, post-procedural pain scores and pain medication for breakthrough pain were recorded. Statistical analysis included Pearson product moment correlations, Mann-Whitney U tests and multiple linear regressions. RESULTS Average peak post-egg retrieval pain during the first 24 hours was 5.0±1.6 on an NRS scale (0=no pain, 10=worst pain imaginable). Peak post-egg retrieval pain was correlated with basal antimullerian hormone (AMH) (r=0.549, P=0.018), pre-procedural peak estradiol (r=0.582, P=0.011), total number of follicles (r=0.517, P=0.028) and number of retrieved eggs (r=0.510, P=0.031). Ovarian hyperstimulation syndrome (OHSS) (n=4) was associated with higher basal AMH (P=0.004), higher peak pain scores (P=0.049), but not with peak estradiol (P=0.13). The mTS did not correlate with peak post-procedural pain (r=0.266, P=0.286), or peak estradiol level (r=0.090, P=0.899). DISCUSSION Peak post-egg retrieval pain intensity was higher than anticipated. Our results suggest that post-egg retrieval pain can be predicted by baseline AMH, high peak estradiol, and OHSS. Further studies to evaluate intra- and post-procedural pain in this population are needed, as well as clinical trials to assess post-procedural analgesia in women presenting with high hormonal levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS The purpose of the present study was to investigate the relationship between in-stent neoatherosclerosis (NA) and native atherosclerosis progression of untreated coronary segments. METHODS AND RESULTS In-stent NA was assessed by optical coherence tomography (OCT) among patients included in the SIRTAX-LATE OCT study 5 years after drug-eluting stent (DES) (sirolimus-eluting and paclitaxel-eluting stents) implantation. Neoatherosclerosis was defined as the presence of fibroatheroma or fibrocalcific plaque within the neointima of stented segments with a longitudinal extension >1.0 mm. Atherosclerosis progression in untreated native coronary segments was evaluated by serial quantitative coronary angiography (QCA). The change in minimal lumen diameter (MLD) was serially assessed within matched segments at baseline and 5-year angiographic follow-up. The key clinical endpoint was non-target lesion (non-TL) revascularization throughout 5 years. A total of 88 patients with 88 lesions were available for OCT analysis 5 years after DES implantation. In-stent NA was observed in 16% of lesions with the majority of plaques being fibroatheromas (11.4%) followed by fibrocalcific plaques (5.7%). A total of 704 non-TL segments were serially evaluated by QCA. Between baseline and 5-year follow-up, the reduction in MLD was significantly more pronounced in patients with NA (-0.25 mm, 95% CI -0.36 to -0.17 mm) when compared with patients without NA (-0.13 mm, 95% CI -0.17 to -0.10 mm, P = 0.002). Similarly, non-TL revascularization was more frequent in patients with NA (78.6%) when compared with patients without NA (44.6%, P = 0.028) throughout 5 years. CONCLUSIONS In-stent NA is more common among patients with angiographic and clinical evidence of native atherosclerosis progression suggesting similar pathophysiological mechanisms.SIRTAX trial is registered at http://www.clinicaltrials.gov/ct2/show/NCT00617084.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Patients admitted to intensive care following surgery for faecal peritonitis present particular challenges in terms of clinical management and risk assessment. Collaborating surgical and intensive care teams need shared perspectives on prognosis. We aimed to determine the relationship between dynamic assessment of trends in selected variables and outcomes. METHODS We analysed trends in physiological and laboratory variables during the first week of intensive care unit (ICU) stay in 977 patients at 102 centres across 16 European countries. The primary outcome was 6-month mortality. Secondary endpoints were ICU, hospital and 28-day mortality. For each trend, Cox proportional hazards (PH) regression analyses, adjusted for age and sex, were performed for each endpoint. RESULTS Trends over the first 7 days of the ICU stay independently associated with 6-month mortality were worsening thrombocytopaenia (mortality: hazard ratio (HR) = 1.02; 95% confidence interval (CI), 1.01 to 1.03; P <0.001) and renal function (total daily urine output: HR =1.02; 95% CI, 1.01 to 1.03; P <0.001; Sequential Organ Failure Assessment (SOFA) renal subscore: HR = 0.87; 95% CI, 0.75 to 0.99; P = 0.047), maximum bilirubin level (HR = 0.99; 95% CI, 0.99 to 0.99; P = 0.02) and Glasgow Coma Scale (GCS) SOFA subscore (HR = 0.81; 95% CI, 0.68 to 0.98; P = 0.028). Changes in renal function (total daily urine output and renal component of the SOFA score), GCS component of the SOFA score, total SOFA score and worsening thrombocytopaenia were also independently associated with secondary outcomes (ICU, hospital and 28-day mortality). We detected the same pattern when we analysed trends on days 2, 3 and 5. Dynamic trends in all other measured laboratory and physiological variables, and in radiological findings, changes inrespiratory support, renal replacement therapy and inotrope and/or vasopressor requirements failed to be retained as independently associated with outcome in multivariate analysis. CONCLUSIONS Only deterioration in renal function, thrombocytopaenia and SOFA score over the first 2, 3, 5 and 7 days of the ICU stay were consistently associated with mortality at all endpoints. These findings may help to inform clinical decision making in patients with this common cause of critical illness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabecular bone score (TBS) rests on the textural analysis of DXA to reflect the decay in trabecular structure characterising osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible as prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly due to an unrealistic set-up and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings was used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation (“full vertebra”), 2) via the classical endplate embedding (“vertebral body”) or 3) via a ball joint to induce anterior wedge failure (“vertebral section”). HR-pQCT scans acquired prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (Fexp) and apparent failure stress (σexp) was assessed and their relative contribution to a multi-linear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with Fexp and σexp, except for the “vertebral body” case (r2 = 0.396, p = 0.028). Aside from the “vertebra section” set-up where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing set-up, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Low back pain is often caused by a trauma causing disc herniation and /or disc degeneration. Although there are some promising approaches for nucleus pulposus repair, the inner tissue of the intervertebral disc (IVD) so far no treatment or repair is available for annulus fibrosus (AF) injuries. Here we aimed to develop a new method to seal and repair AF injuries by using a silk fleece composite and a genipin enhanced hydrogel. Methods Bovine (b) IVDs were harvested under aseptic conditions and kept in free swelling conditions for 24h in high-glucose DMEM containing 5% bovine serum for equilibration (1). A circular 2mm biopsy punch (Polymed Medical Center, Switzerland) was used to form a reproducible defect in the AF. For filling the defect and keeping the silk composite in place a human-derived fibrin gel (Baxter Tisseel, Switzerland) enhanced with 4.2mg/ml of the cross linker genipin (Wako Chemicals GmbH, Germany) was used. The silk composite consists of a mesh- and a membrane side (Spintec Engineering GmbH, Germany); the membrane is facing outwards to form a seal. bIVDs were cultured in vitro for 14 days either under dynamic load in a custom-built bioreactor under physiological conditions (0.2MPa load and ±2° torsion at 0.2Hz for 8h/day) or static diurnal load of 0.2MPa (2). At the end of culture discs were checked for seal failure, disc height, metabolic activity, cell death by necrosis (LDH assay), DNA content and glycosaminoglycan content. Results Silk composite maintained its position throughout the 14 days of culture under loaded conditions. Although repaired discs performed slightly lower in cell activity, DNA and GAG content were in the range of the control. Also LDH resulted in similar values compared to control discs (Fig 1). Height loss in repaired discs was in the same range as for static diurnal loaded control samples. For dynamically loaded samples the decrease was comparable to the injured, unrepaired discs. Fig 1 LDH of repaired discs compared to control disc after 24h in free swelling conditions for equilibration and first three loading cycles. Conclusions Silk-genipin-fibrin reinforced hydrogel is a promising approach to close AF defects as tested by two degree of freedom loading. In further experiments cytocompatibility of genipin has to be investigated. References 1. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. 2. Walser J, Ferguson SJ, Gantenbein-Ritter B. Design of a mechanical loading device to culture intact bovine caudal motional segments of the spine under twisting motion. In: Davies J, editors. Replacing animal models: a practical guide to creating and using biomimetic alternatives. Chichester, UK: John Wiley & Sons, Ltd.; 2012. p. 89-105. Acknowledgements This project is funded by the Gerbert Rüf Stiftung project # GRS-028/13 and the Swiss National Science Project SNF #310030_153411.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Creation of an atraumatic, hearing-preservation cochleostomy is integral to the future of minimally invasive inner ear surgery. The goal of this study was to develop and characterize a novel chemical approach to cochleostomy. STUDY DESIGN Prospective animal study. SETTING Laboratory. METHODS Experimental animal study in which phosphoric acid gel (PAG) was used to decalcify the otic capsule in 25 Hartley guinea pigs. Five animals in each of 5 surgical groups were studied: (1) mechanically opening the auditory bulla alone, (2) PAG thinning of the basal turn otic capsule, leaving endosteum covered by a layer of bone, (3) micro-pick manual cochleostomy, (4) PAG chemical cochleostomy, exposing the endosteum, and (5) combined PAG/micro-pick cochleostomy, with initial chemical thinning and subsequent manual removal of the last osseous layer. Preoperative and postoperative auditory brainstem responses and otoacoustic emissions were obtained at 2, 6, 10, and 16 kHz. Hematoxylin and eosin-stained paraffin sections were compared. RESULTS Surgical and histologic findings confirmed that application of PAG provided reproducible local bone removal, and cochlear access was enabled. Statistically significant auditory threshold shifts were observed at 10 kHz (P = .048) and 16 kHz (P = .0013) following cochleostomy using PAG alone (group 4) and at 16 kHz using manual cochleostomy (group 3) (P = .028). No statistically significant, postoperative auditory threshold shifts were observed in the other groups, including PAG thinning with manual completion cochleostomy (group 5). CONCLUSION Hearing preservation cochleostomy can be performed in an animal model using a novel technique of thinning cochlear bone with PAG and manually completing cochleostomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS Children conceived by assisted reproductive technology (ART) display vascular dysfunction. Its underlying mechanism, potential reversibility and long-term consequences for cardiovascular risk are unknown. In mice, ART induces arterial hypertension and shortens the life span. These problems are related to decreased vascular endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. The aim of this study was to determine whether ART-induced vascular dysfunction in humans is related to a similar mechanism and potentially reversible. To this end we tested whether antioxidants improve endothelial function by scavenging free radicals and increasing NO bioavailability. METHODS AND RESULTS In this prospective double-blind placebo controlled study in 21 ART and 21 control children we assessed the effects of a four-week oral supplementation with antioxidant vitamins C (1 g) and E (400 IU) or placebo (allocation ratio 2:1) on flow-mediated vasodilation (FMD) of the brachial artery and pulmonary artery pressure (echocardiography) during high-altitude exposure (3454 m), a manoeuver known to facilitate the detection of pulmonary vascular dysfunction and to decrease NO bioavailability by stimulating oxidative stress. Antioxidant supplementation significantly increased plasma NO measured by ozone-based chemiluminescence (from 21.7 ± 7.9 to 26.9 ± 7.6 µM, p = 0.04) and FMD (from 7.0 ± 2.1 to 8.7 ± 2.0%, p = 0.004) and attenuated altitude-induced pulmonary hypertension (from 33 ± 8 to 28 ± 6 mm Hg, p = 0.028) in ART children, whereas it had no detectable effect in control children. CONCLUSIONS Antioxidant administration to ART children improved NO bioavailability and vascular responsiveness in the systemic and pulmonary circulation. Collectively, these findings indicate that in young individuals ART-induced vascular dysfunction is subject to redox regulation and reversible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO₂ remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO₂ fertilization, land use, wild fire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO₂ dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO₂ and δ¹³ CO₂ changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO₂ dynamics from 8ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO₂ changes after 122 ka BP. This failure to simulate late-Eemian CO₂ dynamics could be a result of the imposed forcings such as prescribed CaCO₃ accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO₂ dynamics eshallow water CaCO₃ accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO₂ dynamics.