991 resultados para 125-778
What determines the health-related quality of life among regional and rural breast cancer survivors?
Resumo:
Objective: To assess the health-related quality of life (HRQoL) of regional and rural breast cancer survivors at 12 months post-diagnosis and to identify correlates of HRQoL. Methods: 323 (202 regional and 121 rural) Queensland women diagnosed with unilateral breast cancer in 2006/2007 participated in a population-based, cross-sectional study. HRQoL was measured using the Functional Assessment of Cancer Therapy, Breast plus arm morbidity (FACT-B+4) self-administered questionnaire. Results: In age-adjusted analyses, mean HRQoL scores of regional breast cancer survivors were comparable to their rural counterparts 12 months post-diagnosis (122.9, 95% CI: 119.8, 126.0 vs. 123.7, 95% CI: 119.7, 127.8; p>0.05). Irrespective of residence, younger (<50 years) women reported lower HRQoL than older (50+ years) women (113.5, 95% CI: 109.3, 117.8 vs. 128.2, 95%CI: 125.1, 131.2; p<0.05). Those women who received chemotherapy, reported two complications post-surgery, had poorer upper-body function than most, reported more stress, reduced coping, who were socially isolated, had no confidante for social-emotional support, had unmet healthcare needs, and low health self-efficacy reported lower HRQoL scores. Together, these factors explained 66% of the variance in overall HRQoL. The pattern of results remained similar for younger and older age groups. Conclusions and Implications: The results underscore the importance of supporting and promoting regional and rural breast cancer programs that are designed to improve physical functioning, reduce stress and provide psychosocial support following diagnosis. Further, the information can be used by general practitioners and other allied health professionals for identifying women at risk of poorer HRQoL.
Resumo:
The student-teacher relationship should be a critical factor for successful teaching and learning in design education. In tradition, the relationship is defined as a master-apprentice, so design teachers’ visual assessment capability and technical standards significantly affect students’ quality of learning and achievements. However, there are some negative aspects of the master-apprentice relationship in design education that it may restrict student experiences to cultural diversity and interdisciplinary learning through various interactions with other students. A visual design subject was designed to adapt a new learning method that is to share students’ work and assessment through an asynchronous communication tool. This method was expected to reduce the negative aspects of the master-apprentice relationship and enhance peer-to-peer interactions and individualistic collaboration. A survey with two types of student groups in terms of their levels of participation was conducted to evaluate student experiences to this method. The outcomes implicate that online peer assessment is helpful to reduce the negative aspects of master-apprentice relation and can be useful for achieving the ultimate purpose of design education.
Resumo:
Migraine is a painful disorder for which the etiology remains obscure. Diagnosis is largely based on International Headache Society criteria. However, no feature occurs in all patients who meet these criteria, and no single symptom is required for diagnosis. Consequently, this definition may not accurately reflect the phenotypic heterogeneity or genetic basis of the disorder. Such phenotypic uncertainty is typical for complex genetic disorders and has encouraged interest in multivariate statistical methods for classifying disease phenotypes. We applied three popular statistical phenotyping methods—latent class analysis, grade of membership and grade of membership “fuzzy” clustering (Fanny)—to migraine symptom data, and compared heritability and genome-wide linkage results obtained using each approach. Our results demonstrate that different methodologies produce different clustering structures and non-negligible differences in subsequent analyses. We therefore urge caution in the use of any single approach and suggest that multiple phenotyping methods be used.
Resumo:
We report numerical analysis and experimental observation of strongly localized plasmons guided by triangular metal wedges and pay special attention to the effect of smooth (nonzero radius) tips. Dispersion, dissipation, and field structure of such wedge plasmons are analyzed using the compact two-dimensional finite-difference time-domain algorithm. Experimental observation is conducted by the end-fire excitation and near-field scanning optical microscope detection of the predicted plasmons on 40°silver nanowedges with the wedge tip radii of 20, 85, and 125 nm that were fabricated by the focused-ion beam method. The effect of smoothing wedge tips is shown to be similar to that of increasing wedge angle. Increasing wedge angle or wedge tip radius results in increasing propagation distance at the same time as decreasing field localization (decreasing wave number). Quantitative differences between the theoretical and experimental propagation distances are suggested to be due to a contribution of scattered bulk and surface waves near the excitation region as well as the addition of losses due to surface roughness. The theoretical and measured propagation distances are several plasmon wavelengths and are useful for a range of nano-optical applications
Resumo:
Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.
Resumo:
This paper reports research undertaken as part of a larger project in which we examined whether and how values and beliefs communicated by Australian politicians have shaped decades of health policy and influenced health outcomes for Aboriginal and Torres Strait Islander Peoples of Australia. To first characterise those values and beliefs we analysed the public statements of the politicians responsible nationally for the health of Aboriginal and Torres Strait Islander Peoples 1972–2001, using critical discourse analysis. We found that four discourses, communicated through words, phrases, sentences and grammatical structures, dominated public statements over the study period. These four discourses focused on the competence and capacity of Aboriginal and Torres Strait Islander Peoples to “manage”; matters of control of and responsibility for the health of Aboriginal and Torres Strait Islander Peoples; Aboriginal and Torres Strait Islander Peoples as “Other”; and the nature of the “problem” concerning the health of Aboriginal and Torres Strait Islander Peoples. Analysis of the discursive elements contributing to shaping these four discourses is reported in this paper.
Resumo:
Management of acute heart failure is an important consideration in critical care. Mechanical support of the failing heart is crucial for improving health outcomes. The most common Australasian application of intraaortic balloon counterpulsation (IABP) is in the setting of cardiogenic shock. High end users of IABP (>37/annum) demonstrate significantly lower mortality for cardiogenic shock managed with IABP (p <0.001) in contrast to hospitals which employ limited IABP (<4/annum). This underscores the importance of proficiency in managing patient receiving IABP support. Nurses play a crucial role in carding for patients with acute heart failure. This paper summarises care considerations for management of the IABP.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)•4H2O
Resumo:
The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus for the assessment of osteoporosis was first described within this journal 25 years ago. It was recognized in 2006 by Universities UK as being one of the ‘100 discoveries and developments in UK Universities that have changed the world’ over the past 50 years. In 2008, the UK's Department of Health also recognized BUA assessment of osteoporosis in a publication highlighting 11 projects that have contributed to ‘60 years of NHS research benefiting patients’. The BUA technique has been extensively clinically validated and is utilized worldwide, with at least seven commercial systems currently providing calcaneal BUA measurement. However, there is still no fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone. This review aims to provide an ‘engineering in medicine’ perspective and proposes a new paradigm based upon phase cancellation due to variation in propagation transit time across the receive transducer face to explain the non-linear relationship between BUA and bone volume fraction in cancellous bone.
Resumo:
Smart materials, such as thin-film piezoelectric polymers, are interesting for potential applications on Gossamer spacecraft. This investigation aims to predict the performance and long-term stability of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) and its copolymers under conditions simulating the low-Earthorbit environment. To examine the effects of temperature on the piezoelectric properties of PVDF, poly(vinylidenefluoride-co-trifluoroethylene), and poly(vinylidenefluoride-cohexafluoropropylene), the d33 piezoelectric coefficients were measured up to 160 8C, and the electric displacement/electric field (D–E) hysteresis loops were measured from �80 to þ110 8C. The room-temperature d33 coefficient of PVDF homopolymer films, annealed at 50, 80, and 125 8C, dropped rapidly within a few days of thermal exposure and then remained unchanged. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with d33 remaining almost unchanged up to 125 8C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 8C. In situ D–E loop measurements from �80 to þ110 8C showed that the remanent polarization of the TrFE copolymer was more stable than that of the PVDF homopolymer. D–E hysteresis loop and d33 results were also compared with the deflection of the PVDF homopolymer and TrFE copolymer bimorphs tested over a wide temperature range.