969 resultados para 106-115 cm
Resumo:
Authigenic ferromanganese manifestations in bottom sediments from two horizons (0-10 and 240-250 cm) located in the low/high bioproductive transitional zone of the Pacific Ocean were studied. In addition two compositionally different types of micronodules, crusts and ferromanganese nodules were detected in the surface horizon (0-1 cm). Three size fractions (50-100, 100-250, and 250-500 µm) of manganese micronodules were investigated. In terms of surface morphology, color, and shape, the micronodules are divided into dull round (MN1) and angular lustrous (MN2) varieties with different mineral and chemical compositions. MN1 are enriched in Mn and depleted in Fe as compared with MN2. Mn/Fe ratio in MN1 varies from 13 to 14. Asbolane-buserite and birnessite are the major manganese minerals in them. MN2 is mainly composed of vernadite with Mn/Fe ratio from 4.3 to 4.8. Relative to MN1, fraction 50-100 µm of MN2 is enriched in Fe (2.6 times), W (1.8), Mo (3.2), Th (2.3), Ce (5.8), and REE (from 1.2 to 1.8). Relative to counterparts from MN1, separate fractions of MN2 are characterized by greater compositional difference. For example, increase in size of micronodules leads to decrease in contents of Fe (by 10 rel. %), Ce (2 times), W (2.1 times), Mo (2.2 times), and Co (1.5 times). At the same time one can see increase in contents of other elements: Th and Cu (2.1 times), Ni (1.9 times), and REE (from 1.2 to 1.6 times). Differences in chemical and mineral compositions of MN1 and MN2 fractions can be related to alternation of oxidative and suboxidative conditions in the sediments owing to input of labile organic matter, which acts as the major reducer, and allochthonous genesis of MN2.
Resumo:
In Snake Pit massive sulfide fragments and friable, unconsolidated material recovered during ODP Leg 106, isocubanite and pyrite are generally the predominant phases, followed by marcasite, chalcopyrite, sphalerite, and pyrrhotite. Detailed analyses of paragenetic relations of minerals indicate that isocubanite first precipitated together with pyrrhotite. With decreasing temperature, chalcopyrite and sphalerite precipitated, and at the latest stage colloform sphalerite-pyrite (or colloform marcasite) formed. Isocubanite usually has exsolution lamellae of chalcopyrite and less commonly of pyrrhotite. The average bulk chemical composition of the friable, unconsolidated material indicates that it is rich in copper, reflecting the dominance of isocubanite in the specimens, and is characterized by high Co, low Pb, and Ag contents. Sulfur isotope ratios are very uniform, ranging in d34S from +1.2 to +2.8 per mil. The obtained values are apparently low, compared to those for the eastern Pacific sulfide samples, reflecting a smaller contribution of seawater sulfate in the Snake Pit sulfide deposit.