992 resultados para 1059
Resumo:
This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 µg/l) and total protist abundances (max. 4 x 10**3 cells/l) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.
Meteorological observations during INFANTA cruise from Montevideo to La Coruña started at 1789-08-24
Resumo:
We carried out an experiment to estimate in-situ stresses at ODP Hole 794C (water depth: 2809 m) from the basaltic core samples by deformation rate analysis (DRA). Site 794 is located at the northern end of the Yamato Basin and 70 km west of the eastern Japan Sea intraplate or interplate convergent zone. Stress previously applied to a rock specimen is identified in the inelastic strain behavior of the specimen under uniaxial compression by the method used. Natural remanent magnetization of the sample was also measured to get a reference for the orientation of the horizontal stresses. The vertical, maximum, and minimum horizontal in-situ stresses estimated at a depth of 582 mbsf are 36.4, 43.1, and 31.2 MPa, respectively. The average of the largest and the least horizontal stresses is nearly equal in value to the vertical stress. This suggests that the site is in the stress field of the strike slip regime at the depth, while the stress field of the reverse fault regime has been estimated from the focal mechanism solutions of the earthquakes whose hypocenters are located near or on the convergent boundary. The directions of the largest and the least horizontal stress are estimated to be northeast-southwest and in northwest-southeast, respectively, in taking account of rotation tectonics of the Japan Sea since its formation. The directions of the largest and the least horizontal stresses are opposite to those determined from the earthquakes. These discrepancies of our results with those from earthquakes may be due mainly to the fact that the site is not in the convergent zone.
Resumo:
Ten ODP sites drilled in a depth transect (2164-4775 m water depth) during Leg 172 recovered high-deposition rate (>20 cm/kyr) sedimentary sections from sediment drifts in the western North Atlantic. For each site an age model covering the past 0.8-0.9 Ma has been developed. The time scales have a resolution of 10-20 kyr and are derived by tuning variations of estimated carbonate content to the orbital parameters precession and obliquity. Based on the similarity in the signature of proxy records and the spectral character of the time series, the sites are divided into two groups: precession cycles are better developed in carbonate records from a group of shallow sites (2164-2975 m water depth, Sites 1055-1058) while the deeper sites (2995-4775 m water depth, Sites 1060-1063) are characterized by higher spectral density in the obliquity band. The resulting time scales show excellent coherence with other dated carbonate and isotope records from low latitudes. Besides the typical Milankovitch cyclicity significant variance of the resulting carbonate time series is concentrated at millennial-scale changes with periods of about 12, 6, 4, 2.5, and 1.5 kyr. Comparisons of carbonate records from the Blake Bahama Outer Ridge and the Bermuda Rise reveal a remarkable similarity in the time and frequency domain indicating a basin-wide uniform sedimentation pattern during the last 0.9 Ma.
Resumo:
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.