994 resultados para 024.272


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Williams, Ioan. 'Towards national identities: Welsh theatres', In: The Cambridge History of British Theatre, (Eds) Kershaw, Baz., Cambridge University Press, 2004, pp.242-272 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jones, Aled, 'Welsh Missionary Journalism in India, 1880-1947', In: 'Imperial Co-Histories: National Identities and the British and Colonial Press', (Cranbury, NJ: Fairleigh Dickinson University Press), pp.242-272, 2003 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls expression of the morphogenetic and lysis modules of the phage, activating their transcription. As expected, rinA deletion eliminated formation of functional phage particles and significantly decreased the transfer of phage and pathogenicity island encoded virulence factors. A genetic analysis of the late promoter region showed that a fragment of 272 bp contains both the promoter and the region necessary for activation by RinA. In addition, we demonstrated that RinA is the only phage-encoded protein required for the activation of this promoter region. This region was shown to be divergent among different phages. Consequently, phages with divergent promoter regions carried allelic variants of the RinA protein, which specifically recognize its own promoter sequence. Finally, most Gram-postive bacteria carry bacteriophages encoding RinA homologue proteins. Characterization of several of these proteins demonstrated that control by RinA of the phage-mediated packaging and transfer of virulence factor is a conserved mechanism regulating horizontal gene transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta es la versión no revisada del artículo: Inmaculada Higueras, Natalie Happenhofer, Othmar Koch, and Friedrich Kupka. 2014. Optimized strong stability preserving IMEX Runge-Kutta methods. J. Comput. Appl. Math. 272 (December 2014), 116-140. Se puede consultar la versión final en https://doi.org/10.1016/j.cam.2014.05.011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

42 hojas : ilustraciones, fotografías a color.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[272] hojas : ilustraciones, fotografías.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6 hojas : ilustraciones, fotografías a color

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the peer-to-peer community's obvious wish to have its systems adopted, specific mechanisms to facilitate incremental adoption have not yet received the same level of attention as the many other practical concerns associated with these systems. This paper argues that ease of adoption should be elevated to a first-class concern and accordingly presents HOLD, a front-end to existing DHTs that is optimized for incremental adoption. Specifically, HOLD is backwards-compatible: it leverages DNS to provide a key-based routing service to existing Internet hosts without requiring them to install any software. This paper also presents applications that could benefit from HOLD as well as the trade-offs that accompany HOLD. Early implementation experience suggests that HOLD is practical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks are characterized by limited energy resources. To conserve energy, application-specific aggregation (fusion) of data reports from multiple sensors can be beneficial in reducing the amount of data flowing over the network. Furthermore, controlling the topology by scheduling the activity of nodes between active and sleep modes has often been used to uniformly distribute the energy consumption among all nodes by de-synchronizing their activities. We present an integrated analytical model to study the joint performance of in-network aggregation and topology control. We define performance metrics that capture the tradeoffs among delay, energy, and fidelity of the aggregation. Our results indicate that to achieve high fidelity levels under medium to high event reporting load, shorter and fatter aggregation/routing trees (toward the sink) offer the best delay-energy tradeoff as long as topology control is well coordinated with routing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With web caching and cache-related services like CDNs and edge services playing an increasingly significant role in the modern internet, the problem of the weak consistency and coherence provisions in current web protocols is becoming increasingly significant and drawing the attention of the standards community [LCD01]. Toward this end, we present definitions of consistency and coherence for web-like environments, that is, distributed client-server information systems where the semantics of interactions with resource are more general than the read/write operations found in memory hierarchies and distributed file systems. We then present a brief review of proposed mechanisms which strengthen the consistency of caches in the web, focusing upon their conceptual contributions and their weaknesses in real-world practice. These insights motivate a new mechanism, which we call "Basis Token Consistency" or BTC; when implemented at the server, this mechanism allows any client (independent of the presence and conformity of any intermediaries) to maintain a self-consistent view of the server's state. This is accomplished by annotating responses with additional per-resource application information which allows client caches to recognize the obsolescence of currently cached entities and identify responses from other caches which are already stale in light of what has already been seen. The mechanism requires no deviation from the existing client-server communication model, and does not require servers to maintain any additional per-client state. We discuss how our mechanism could be integrated into a fragment-assembling Content Management System (CMS), and present a simulation-driven performance comparison between the BTC algorithm and the use of the Time-To-Live (TTL) heuristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of delivering popular streaming media to a large number of asynchronous clients. We propose and evaluate a cache-and-relay end-system multicast approach, whereby a client joining a multicast session caches the stream, and if needed, relays that stream to neighboring clients which may join the multicast session at some later time. This cache-and-relay approach is fully distributed, scalable, and efficient in terms of network link cost. In this paper we analytically derive bounds on the network link cost of our cache-and-relay approach, and we evaluate its performance under assumptions of limited client bandwidth and limited client cache capacity. When client bandwidth is limited, we show that although finding an optimal solution is NP-hard, a simple greedy algorithm performs surprisingly well in that it incurs network link costs that are very close to a theoretical lower bound. When client cache capacity is limited, we show that our cache-and-relay approach can still significantly reduce network link cost. We have evaluated our cache-and-relay approach using simulations over large, synthetic random networks, power-law degree networks, and small-world networks, as well as over large real router-level Internet maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large probabilistic graphs arise in various domains spanning from social networks to biological and communication networks. An important query in these graphs is the k nearest-neighbor query, which involves finding and reporting the k closest nodes to a specific node. This query assumes the existence of a measure of the "proximity" or the "distance" between any two nodes in the graph. To that end, we propose various novel distance functions that extend well known notions of classical graph theory, such as shortest paths and random walks. We argue that many meaningful distance functions are computationally intractable to compute exactly. Thus, in order to process nearest-neighbor queries, we resort to Monte Carlo sampling and exploit novel graph-transformation ideas and pruning opportunities. In our extensive experimental analysis, we explore the trade-offs of our approximation algorithms and demonstrate that they scale well on real-world probabilistic graphs with tens of millions of edges.