967 resultados para 020503 Nonlinear Optics and Spectroscopy
Resumo:
In this letter we report the carrier mobilities in an inorganic nanocrystal: conducting polymer composite. The composite material in question (lead sulphide nanocrystals in the conducting polymer poly [2-methoxy-5-(2(')-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) was made using a single-pot, surfactant-free synthesis. Mobilties were measured using time of flight techniques. We have found that the inclusion of PbS nanocrystals in MEH-PPV both balances and markedly increases the hole and electron mobilities-the hole mobility is increased by a factor of similar to 10(5) and the electron mobility increased by similar to 10(7) under an applied bias of 5 kV cm(-1). These results explain why dramatic improvements in electrical conductivity and photovoltaic performance are seen in devices fabricated from these composites.
Resumo:
Based on a self-similar array model of single-walled carbon nanotubes (SWNTs), the pore structure of SWNT bundles is analyzed and compared with that obtained from the conventional triangular model and adsorption experimental results. In addition to the well known cylindrical endo-cavities and interstitial pores, two types of newly defined pores with diameters of 2-10 and 8-100 nm are proposed, inter-bundle pores and inter-array pores. In particular, the relationship between the packing configuration of SWNTs and their pore structures is systematically investigated. (c) 2005 American Institute of Physics.
Resumo:
In this work, we analyse and compare the continuous variable tripartite entanglement available from the use of two concurrent or cascaded X (2) nonlinearities. We examine both idealized travelling-wave models and more experimentally realistic intracavity models, showing that tripartite entangled outputs are readily producible. These may be a useful resource for applications such as quantum cryptography and teleportation.
Resumo:
The Leximancer system is a relatively new method for transforming lexical co-occurrence information from natural language into semantic patterns in an unsupervised manner. It employs two stages of co-occurrence information extraction-semantic and relational-using a different algorithm for each stage. The algorithms used are statistical, but they employ nonlinear dynamics and machine learning. This article is an attempt to validate the output of Leximancer, using a set of evaluation criteria taken from content analysis that are appropriate for knowledge discovery tasks.
Resumo:
First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.
Resumo:
The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.
Resumo:
We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.
Resumo:
We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anticommuting Grassmann variables. Furthermore, because of the overcompleteness of the basis, the phase-space distribution can always be chosen positive. This has important consequences for the sign problem in fermion physics.
Resumo:
We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behavior in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.
Resumo:
The multimode operation of an optical parametric oscillator (OPO) operating below threshold is calculated. We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is calculated.
Resumo:
We describe a scheme for measurement of the mean photon flux at an arbitrary optical sideband frequency using homodyne detection. Experimental implementation of the technique requires an acousto-optic modulator in addition to the homodyne detector, and does not require phase locking. The technique exhibits polarization and frequency and spatial mode selectivity, as well as much improved speed, resolution, and dynamic range when compared to linear photodetectors and avalanche photodiodes, with potential application to quantum-state tomography and information encoding using an optical frequency basis. Experimental data also support a quantum-mechanical description of vacuum noise.
Resumo:
We show how to convert between partially coherent superpositions of a single photon with the vacuum by using linear optics and postselection based on homodyne measurements. We introduce a generalized quantum efficiency for such states and show that any conversion that decreases this quantity is possible. We also prove that our scheme is optimal by showing that no linear optical scheme with generalized conditional measurements, and with one single-rail qubit input, can improve the generalized efficiency. (c) 2006 Optical Society of America.
Resumo:
We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.
Resumo:
We develop criteria sufficient to enable detection of macroscopic coherence where there are not just two macroscopically distinct outcomes for a pointer measurement, but rather a spread of outcomes over a macroscopic range. The criteria provide a means to distinguish a macroscopic quantum description from a microscopic one based on mixtures of microscopic superpositions of pointer-measurement eigenstates. The criteria are applied to Gaussian-squeezed and spin-entangled states.