982 resultados para 0105 Mathematical Physics
Resumo:
In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Estimation of design quantiles of hydrometeorological variables at critical locations in river basins is necessary for hydrological applications. To arrive at reliable estimates for locations (sites) where no or limited records are available, various regional frequency analysis (RFA) procedures have been developed over the past five decades. The most widely used procedure is based on index-flood approach and L-moments. It assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real-world scenario, this assumption may not be valid even if a region is statistically homogeneous. To address this issue, a novel mathematical approach is proposed. It involves (i) identification of an appropriate frequency distribution to fit the random variable being analyzed for homogeneous region, (ii) use of a proposed transformation mechanism to map observations of the variable from original space to a dimensionless space where the form of distribution does not change, and variation in values of its parameters is minimal across sites, (iii) construction of a growth curve in the dimensionless space, and (iv) mapping the curve to the original space for the target site by applying inverse transformation to arrive at required quantile(s) for the site. Effectiveness of the proposed approach (PA) in predicting quantiles for ungauged sites is demonstrated through Monte Carlo simulation experiments considering five frequency distributions that are widely used in RFA, and by case study on watersheds in conterminous United States. Results indicate that the PA outperforms methods based on index-flood approach.
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I-Kr blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.
Resumo:
We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.
Resumo:
We characterize the eigenfunctions of an equilateral triangle billiard in terms of its nodal domains. The number of nodal domains has a quadratic form in terms of the quantum numbers, with a non-trivial number-theoretic factor. The patterns of the eigenfunctions follow a group-theoretic connection in a way that makes them predictable as one goes from one state to another. Extensive numerical investigations bring out the distribution functions of the mode number and signed areas. The statistics of the boundary intersections is also treated analytically. Finally, the distribution functions of the nodal loop count and the nodal counting function are shown to contain information about the classical periodic orbits using the semiclassical trace formula. We believe that the results belong generically to non-separable systems, thus extending the previous works which are concentrated on separable and chaotic systems.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
We develop the formalism of quantum mechanics on three-dimensional fuzzy space and solve the Schrodinger equation for the free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well are calculated.
Resumo:
We compute the logarithmic correction to black hole entropy about exponentially suppressed saddle points of the Quantum Entropy Function corresponding to Z(N) orbifolds of the near horizon geometry of the extremal black hole under study. By carefully accounting for zero mode contributions we show that the logarithmic contributions for quarter-BPS black holes in N = 4 supergravity and one-eighth BPS black holes in N = 8 supergravity perfectly match with the prediction from the microstate counting. We also find that the logarithmic contribution for half-BPS black holes in N = 2 supergravity depends non-trivially on the Z(N) orbifold. Our analysis draws heavily on the results we had previously obtained for heat kernel coefficients on Z(N) orbifolds of spheres and hyperboloids in arXiv:1311.6286 and we also propose a generalization of the Plancherel formula to Z(N) orbifolds of hyperboloids to an expression involving the Harish-Chandra character of sl (2, R), a result which is of possible mathematical interest.