992 resultados para amphibole olivine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gabbroic cumulates drilled south of the Kane Transform Fault on the slow-spread Mid-Atlantic Ridge preserve up to three discrete magnetization components. Here we use absolute age constraints derived from the paleomagnetic data to develop a model for the magmatic construction of this section of the lower oceanic crust. By comparing the paleomagnetic data with mineral compositions, and based on thermal models of local reheating, we infer that magmas that began crystallizing in the upper mantle intruded into the lower oceanic crust and formed meter-scale sills. Some of these magmas were crystal-laden and the subsequent expulsion of interstitial liquid from them produced '"cumulus" sills. These small-scale magmatic injections took place over at least 210 000 years and at distances of ~3 km from the ridge axis and may have formed much of the lower crust. This model explains many of the complexities described in this area and can be used to help understand the general formation of oceanic crust at slow-spread ridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO*/MgO ratio (0.95 with total Fe as FeO), and Mg# (100 Mg/Mg + Fe" = 70), sample 483-17-2-(78-83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a La/Sm_cn (chondrite-normalized) = 0.36, and Eu/Sm_cn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (Eu/Sm_cn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78-83) to form the least differentiated sample with Mg# = 63. The La/Sm_cn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher La/Sm_cn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower La/Sm_cn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78-83) is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of serpentinized peridotites from Hole 670A of Leg 109 were studied in detail. A small piece of relatively unaltered sample, 109-670A-9R-1, #3 (22-24 cm), is olivine websterite characterized by aluminous chromian spinel with Cr/(Cr + Al) ratio of about 0.2. The other minerals have compositions essentially identical with those in more commonly observed serpentinized harzburgite like 109-670A-9R-01, #12 (94-97 cm). The occurrence of pyroxene-rich peridotite with normal harzburgite suggests that small scale heterogeneity in modal compositions exists in the upper mantle beneath the Mid-Atlantic Ridge. Low Cr/Al ratios of spinel and pyroxenes of those peridotites indicate that they are relatively less refractory among peridotites ever recovered from the oceanic region. Textures and the estimated equilibration temperatures indicate that peridotites recovered from Hole 670A are recrystallized and reequilibrated at subsolidus temperature. The occurrence of serpentinized peridotites from the rift valley of the active mid-oceanic ridge may suggest that they represent direct exposure of upwelling mantle materials rather than serpentine diapirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical compositions and 1-atm. phase relations were determined for basalts drilled from Holes 501, 504A, 504B, 505, and 505B on Legs 68, 69, and 70 of the Deep Sea Drilling Project. Chemical, experimental, and petrographic data indicate that these basalts are moderately evolved (Mg' values from 0.60 to 0.70), with olivine plus Plagioclase and often clinopyroxene on the liquidus. Chemical stratigraphy was used to infer that sequential influxes of magma into a differentiating magma chamber or separate flows from different magma chambers or both had occurred. Two major types of basalt were found to be inter layered: Group M, a rarely occurring type with major element chemistry and magmaphile element abundances within the range of the majority of ocean-floor basalts (TiO2 = 1.3%, Na2O 2.5%, Zr = 103 ppm, Nb = 2.5 ppm, and Y = 31 ppm); and Group D, a highly unusual series of basalt compositions that exhibit much lower magmaphile element abundances (TiO2 = 0.75-1.2%, Na2O = 1.7-2.3%, Zr = 34-60 ppm, Nb = 0.5-1.2 ppm, and Y = 16-27 ppm). The liquidus temperatures of the Group D basalts are high (1230- 1260°C) compared with those of other ocean-floor basalts of similar Mg' values. They have high CaO/Na2O ratios (5-8) and are calculated to be in equilibrium with unusually calcic Plagioclase (An78-84). The two basalt groups cannot be related by fractionation processes. However, constant Zr/Nb ratios (>40) for the two groups suggest a single mantle source, with differences in magmaphile element abundances and other element ratios (e.g., Zr/Ti, Zr/Y, Ce/Yb) arising through sequential melting of the same source. Magmas similar to Group D, if mixed with more typical mid-ocean-ridge basalt (MORB) magmas in shallow magma chambers, could provide a source for the highly calcic Plagioclase phenocrysts that appear in more common (i.e., less depleted) phyric ocean-floor basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate of subducted sediment and the extent to which it is dehydrated and/or melted before incorporation into arc lavas has profound implications for the thermo-mechanical nature of the mantle wedge and models for crustal evolution. In order to address these issues, we have undertaken the first measurements of 10Be and light elements in lavas from the Tonga-Kermadec arc and the sediment profile at DSDP site 204 outboard of the trench. The 10Be/9Be ratios in the Tonga lavas are lower than predicted from flux models but can be explained if (a) previously estimated sediment contributions are too high by a factor of 2-10, (b) the top 1-22 m of the incoming sediment is accreted, (c) large amounts of sediment erosion are proposed, or (d) the sediment component takes several Myr longer than the subducting plate to reach the magma source region beneath Tonga. The lavas form negative Th/Be-Li/Be arrays that extend from a depleted mantle source composition to lower Th/Be and Li/Be ratios than that of the bulk sediment. Thus, these arrays are not easily explained by bulk sediment addition and, using partition coefficients derived from experiments on the in-coming sediment, we show that they are also unlikely to result from fluid released during dehydration of the sediment (or altered oceanic crust). However, partial melts of the dehydrated sediment residue formed at ~800 °C during the breakdown of amphibole +/- plagioclase and in the absence of cordierite have significantly lowered Th/Be ratios. The lava arrays can be successfully modelled as 10-15% partial melts of depleted mantle after it has been enriched by the addition of 0.2-2% of these partial melts. Phase relations suggest that this requires that the top of the subducting crust reaches temperatures of ~800 °C by the time it attains ~ 80 km depth which is in excellent agreement with the results of recent numerical models incorporating a temperature-dependent mantle viscosity. Under these conditions the wet basalt solidus is also crossed yet there is no recognisable eclogitic signal in the lavas suggesting that on-going dehydration or strong thermal gradients in the upper part of the subducting plate inhibit partialmelting of the altered oceanic crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. Much of the 209 meters of basement cored at Site 458 consists of endiopside- and bronzite-bearing, Mg-rich andesites with compositions related to boninites. These andesites have the very low Ti, Zr, Ti/Zr, P, and rare-earthelement contents characteristic of boninites, although they are slightly light-rare-earth-depleted and have lower MgO, Cr, Ni, and higher CaO and Al2O3 contents than those reported for typical boninites. The large variations in chemistry observed in the lavas recovered from this transect suggest that diverse mantle source compositions and complex petrogenetic process are involved in forming crustal rocks at this intra-oceanic active plate margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geomorphology of the Guinea Basin is described along with sediments from cores collected on the abyssal plain, within the abyssal hill zone, and in the eastern part of the Chain Fracture Zone. Stratigraphic differentiation of deep-sea sediments was based on diatom analysis, geochemical and lithological data. Holocene and Pleistocene were identified by these criteria. The lower boundary of Holocene is was found from a marked decrease in CaCO3 concentration and total diatom count. Mineral and chemical compositions are given for coarse silt fraction of various Late Pleistocene sediments. It is shown that this facial complex is determined by tectonic position of the Guinea Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basaltic rocks recovered at the Middle America Trench area off Mexico are typical plagioclase-olivine phyric abyssal tholeiites containing less than 0.2 wt.% K2O. Phenocrysts of plagioclase and olivine usually make up the aggregate. Plagioclase phenocrysts are Ca-rich and up to An90. Olivine phenocrysts, which are always attached to plagioclase phenocrysts, are magnesian, Fo88 to Fo89, and contain 0.2 to 0.3 wt. % of NiO. Plagioclase phenocrysts contain numerous glass inclusions with the Mg/Mg+Fe atomic ratio of 0.70 to 0.73, which is distinctly higher than the same ratio of the bulk rock (0.62-0.63). Olivine of Fo88 to Fo89 is equilibrated with the liquid with an Mg/Mg+Fe atomic ratio of about 0.7, assuming the KDMg-Fe between liquid and olivine of 0.3. Small droplets of glass within glass inclusions in plagioclase are more enriched in K2O and volatiles than the host glass. This enrichment may have been caused by the extraction of Al2O3 as plagioclase from the trapped liquid and implies its immiscibility. Aggregates of plagioclase with small amounts of olivine may have been floated from more primitive magma with an Mg/Mg+Fe atomic ratio of about 0.7, judging from the chemical characteristics mentioned above. Flotation must have occurred at relatively high pressure. Large crystals of plagioclase and smaller crystals of olivine are xenocryst rather than phenocryst. Parental magma of Leg 66 basalt was high-MgO olivine tholeiite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractive index and chemical composition were determined for glass shards contained in more than 100 tephra layers in DSDP Leg 58 sediment cores collected in the Shikoku Basin, North Philippine Sea. The refractive index is consistent with chemical composition. Refractive index and total iron show a linear relationship. Tephra in Pleistocene and Pliocene sediments is mostly rhyolitic and dacitic (non-alkali), whereas tephra in the Miocene shows wide composition variations in the eastern part of the basin. Basaltic tephra is recognized in Miocene sediments at Sites 443 and 444, but not at Site 442, west of the other two sites. This indicates that the basaltic tephra came from eruption relatively close to those drill sites (perhaps the Kinan Seamounts and the Shichito-Iwo Jima volcanic arc), although the exact source has not been identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In einer Fülle sedimentpetrographischer Arbeiten wird versucht, aus der KorngrÃßenverteilung und der Mineralzusammensetzung von Sanden Schlüsse auf ihre Herkunft, ihre Transportrichtung oder ihr Ablagerungsmilieu abzuleiten, die für die LÃsung geologischer und ebenso auch wasserbaulicher Probleme nÃtig sind. Diese Literatur steckt noch voller Widersprüche und Fehlschlüsse. In der vorliegenden Arbeit wird daher versucht, den Mechanismus des Sandtransports vom Grundsätzlichen her besser verständlich zu machen. Das geschieht anhand zweier ausgewählter und eingehend untersuchter Beispiele aus dem Küstenbereich der westlichen Ostsee unter Einbeziehung der Erfahrungen an vielen Vergleichsproben aus verschiedensten Sedimentationsräumen. Unentbehrlich für das Verständnis der transportbedingten Veränderungen an den Sanden ist das sog. 'Ãquivalenzprinzip' (Abschnitt 2). Es stellt fest, daß es in einem von einer StrÃmung transportierten Sediment immer KÃrner zwar verschiedener KorngrÃße, aber auch entsprechend verschiedener Dichte und/oder Kornform gibt, die miteinander transportiert und abgelagert werden, weil unter den herrschenden hydraulischen Bedingungen diese Eigenschaften einander voll kompensieren. In Abschnitt 3 wird kurz die von Rittenhouse angegebene Methode geschildert, mit der man an natürlichen Sedimenten unter der sehr allgemein gehaltenen 'Ãquivalenzbedingung' gleicher Transportierbarkeit bestimmen kann, welches KorngrÃßenverhältnis ein bestimmtes Verhältnis der Dichten kompensieren kann. Die von Rittenhouse am Beispiel von Flußsanden gefundene Funktion zwischen der Dichte der KÃrner und ihrem Ãquivalenzverhältnis gegen QuarzkÃrner wird hier als erste Näherung auch für die Transportverhältnisse von Strandsanden zugrunde gelegt. In Abschnitt 6 wird gezeigt, daß das auch gerechtfertigt ist. In Abschnitt 4 wird eine allgemein brauchbare Methode abgeleitet, mit der man nicht nur unter stark vereinfachenden Annahmen, sondern auch an Sanden mit realen, stets komplexen Korn-grÃßenverteilungen die Folgen des Ãquivalenzprinzips für die Verteilung von Mineralen verschiedener Dichte berechnen kann. Für jede Serie von Sanden, deren KorngrÃßenverteilungen entlang des Transportweges eine bestimmte, von den Transportbedingungen abhängige Entwicklung durchmachen, ergibt sich damit eine Kurvenschar, die beschreibt, wie sich die Mengen von Mineralien mit verschiedenen Dichten in den einzelnen KorngrÃßenklassen dabei ändern müßten, vorausgesetzt, daß sie im gesamten KorngrÃßenbereich gleich verfügbar wären. Diese Kurvenschar ist die 'Charakteristik' des betreffenden Transportfalles. Durch den Vergleich zwischen den nach der Charakteristik in den einzelnen Klassen zu erwartenden Mineralmengen mit den in dem betrachteten Transportfall tatsächlich gefundenen läßt sich deren relative, d. h. auf die Menge des Quarzes bezogene 'Verfügbarkeit' berechnen. Sie wird durch die sog. 'hydraulischen Verhältnisse' (Rittenhouse) ausgedrückt, die im Gegensatz zu den 'Klassenverhältnissen' von der KorngrÃßensonderung beim Transport unabhängig und nur von der Zusammensetzung des Ausgangsmaterials bestimmt sind, solange beim Transport allein das Ãquivalenzprinzip wirksam ist. In den untersuchten Fällen von Sandtransport an zwei Strandabschnitten der westlichen Ostsee (Abschnitt 5) zeigte dieser Vergleich (Abschnitt 6), daß die beobachtete Verteilung von Schwermineralen nicht allein durch Transportsonderung unter Gültigkeit des Ãquivalenzprinzips erklärt werden kann, sondern daß dabei offenbar auch mechanische Zerkleinerung der KÃrner während des Transports mitgewirkt haben muß. Nur ein solcher, von der Transportsonderung unabhängiger Effekt kann als Transportrichtungs-Kriterium benutzt werden, wenn die Entwicklung der KorngrÃßenverteilungen allein keine Entscheidung erlaubt. Wie die Beispiele zeigen, läßt sich Klarheit über die bisher noch sehr umstrittene Frage nach dem Ausmaß der transportbedingten mechanischen Zerkleinerung von SandkÃrnern nur gewannen, wenn in Zukunft versucht wird, bei der Bearbeitung natürlicher Beispiele den Einfluß der stets vorhandenen Transportsonderung auf Veränderungen des Mineralbestandes unter Anwendung des Ãquivalenzprinzips rechnerisch auszuschalten. Ãœber dieses wesentlichste Ergebnis hinaus erlauben die dargestellten Zusammenhänge auch eine kritische Stellungnahme zu den oben erwähnten allgemeinen Problemen und führen zu methodischen und sachlichen Verbesserungsvorschlägen für weitere Untersuchungen an klastischen Sedimenten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.