925 resultados para ¹H and 13C-NMR


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complete assignment of the (1)H and (13)C NMR spectra of the diastereomeric pairs of some alpha-arylsulfinyl-substituted N-methoxy-N-methylpropionamides with the substituents methoxy, methyl, chloro, nitro is reported. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a "transient site", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum mechanics calculations at the ab initio HF/3-21G* level were carried out with Nuclear Magnetic Resonance (NMR) measurements to characterize citric acid and lithium interactions. The results indicate the formation of a tridentate organometallic compound with one lithium and one citric acid molecule and a tridentate and bidentate compound of two lithium atoms and one citric acid molecule. The results are in agreement with the experimental and theoretical data. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C) and nitrogen (15N/14N) stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM), bovine meat and bone meal (MBM) or poultry feather meal (PFM), or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major), keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical conductivity and H-1 Nuclear Magnetic Resonance (NMR) techniques were used to investigate the ion-exchanged layered lead-niobate perovskite HPb2Nb3O10. nH(2)O, over the temperature range 90-350 K. Compounds were synthesized by the sol-gel method and calcinated at 650 degreesC. Analysis of the NMR data gives activation energies for the proton motion in the range 0.14-0.40 eV, which are dependent on the water content. The frequency and temperature dependencies of the proton spin-lattice relaxation times show that the character of the motion of the: water molecules is essentially two-dimensional, reflecting the layered structure of the material. The H-1 line-narrowing transition and the single spin-lattice relaxation rate maximum, observed in the hydrated compounds, are consistent with a Grotthuss-like mechanism for the proton diffusion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elemental composition and spectroscopic properties (FT-IR and CP/MAS C-13-NMR) of sedimentary humic substances (HS) from aquatic subtropical environments (a lake, an estuary and two marine sites) are investigated. Humic acids (HA) are relatively richer in nitrogen and in aliphatic chains than fulvic acids (FA) from the same sediments. Conversely, FA are richer in carboxylic groups and in ring polysaccharides than HA. Nitrogen is mostly present as amide groups and for lake and marine HS the FT-IR peaks around 1640 cm(-1) and 1540 cm(-1) identify polypeptides. Estuarine HS exhibit mixed continental-marine influences, these being highly influenced by site location. Overall, the data suggest that aquatic and mixed HS are more aliphatic than has been proposed in current models and also that amide linkages form an important part of their structural configuration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 2 x) NaPO3-x WO3 (0 <= x <= 70) glass forming system using conventional melting-quenching methods. The structural evolution of the vitreous network was monitored as a function of composition by thermal analysis, Raman spectroscopy and high resolution one- and two-dimensional P-31 solid state NMR. Addition of WO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures, suggesting a significant increase in network connectivity. At the same time Raman spectra indicate that up to about 30 mol% WO3 the tungsten atoms are linked to some non-bridging oxygen atoms (W-O- or W=O bonded species), suggesting that the network modifier sodium oxide is shared to some extent between both network formers. W-O- W bond formation occurs only at WO3 contents exceeding 30 mol%. P-31 magic angle spinning (MAS)-NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. The possible formation of some anionic tungsten sites suggested from the Raman data implies an average increase in the degree of polymerization for the phosphorus species, which would result in diminished P-31/Na-23 interactions. This prediction is indeed confirmed by P-31{Na-23} and Na-23{P-31} rotational echo double resonance (REDOR) NMR results, which indicate that successive addition of WO3 to NaPO3 glass significantly diminishes the strength of phosphorus-sodium dipole-dipole couplings.