974 resultados para (H2S HS- S2-)
Resumo:
The aim of this study was to asses results obtained from a range of commonly performed lower extremity open and closed chain kinetic tests used for predicting foot function and correlate these test findings to data obtained from the Zebris WinFDM-T system. When performed correctly these tests are thought to be indicators of lower extremity function. Podiatrists frequently perform examinations of joint and muscle structures to understand biomechanical function; however the relationship between these routine tests and forces generated during the gait cycle are not always well understood. This can introduce a degree of variability in clinical interpretation which creates conjecture regarding the value of these tests.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (||), the volume fraction () and the relaxation time () of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
- Purpose of the study Hearing impairment (HI) is associated with driving safety (e.g., increased crashes and poor on-road driving performance). However, little is known about HI and driving mobility. This study examined the longitudinal association of audiometric hearing with older adults driving mobility over three years. - Design and Methods Secondary data analyses were conducted of 500 individuals (63-90 years) from the Staying Keen in Later Life (SKILL) study. Hearing (pure tone average of 0.5, 1, and 2 kHz) was assessed in the better hearing ear and categorized into normal hearing <25 dB HL; mild HI 26-40 dB HL; or moderate and greater HI>41 dB HL. The Useful Field of View Test (UFOV) was used to estimate the risk for adverse driving events. MANCOVA compared driving mobility between HI levels across time, adjusting for age, sex, race, hypertension, and stroke. Adjusting for these same covariates, Cox regression analyses examined incidence of driving cessation by HI across three years. - Results Individuals with moderate or greater HI performed poorly on the UFOV, indicating increased risk for adverse driving events (p<.001). No significant differences were found among older adults with varying levels of HI for driving mobility (ps>.05), including driving cessation rates (p=.38), across time. - Implications Although prior research indicates older adults with HI may be at higher risk for crashes, they may not modify driving over time. Further exploration of this issue is required to optimize efforts to improve driving safety and mobility among older adults.
Resumo:
The analysis of transient electrical stresses in the insulation of high voltage rotating machines is rendered difficult because of the existence of capacitive and inductive couplings between phases. The Published theories ignore many of the couplings between phases to obtain the solution. A new procedure is proposed here to determine the transient voltage distribution on rotating machine windings. All the significicant capacitive and inductive couplings between different sections in a phase and between different sections in different phases have been considered in this analysis. The experimental results show good correlation with those computed.
Resumo:
This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant D 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.
Resumo:
Graphene-nanocrystalline metal sulphide composites were prepared by a one-pot reaction. A dispersion of graphite oxide layers in an aqueous solution of metal ions (Cd2+/Zn2+) was reacted with H2S gas, which acts as a sulphide source as well as a reducing agent, resulting in the formation of metal sulphide nanoparticles and simultaneous reduction of graphite oxide sheets to graphene sheets. The surface defect related emissions shown by free metal sulphide particles are quenched in the composites due to the interaction of the surface of the nanoparticles with graphene sheets.
Resumo:
Abstract is not available.
Resumo:
We focus on athermal phase transitions where in discrete and dissipative avalanches are observed in physical observables as the system jumps from one metastable state to another, when driven by an external field. Using higher order statistics of time dependent avalanches, or noise, in electrical resistivity during temperature-driven martensite transformation in thin nickel-titanium films, we demonstrate evidence suggesting the existence of a singular `global instability' or divergence of the correlation length as a function of temperature at the transition. These results not only establish a mapping of non-equilibrium first order phase transition and equilibrium critical phenomena, but perhaps also call for a re-evaluation of many existing experimental claims of self-organized criticality.
Resumo:
Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school childrens daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track childrens time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 104 for children attending S1, 9.81 103 for S2, and 4.19 104 for S3. The mean daily NO2 exposure (g m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.
Resumo:
We investigated the surface electromyogram response of six forearm muscles to falls onto the outstretched hand. The extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi ulnaris, abductor pollicis longus, flexor carpi radialis and flexor carpi ulnaris muscles were sampled from eight volunteers who underwent ten self-initiated falls. All muscles initiated prior to impact. Co-contraction is the most obvious surface electromyogram feature. The predominant response is in the radial deviators. The surface electromyogram timing we recorded would appear to be a complex anticipatory response to falling modified by the ef- fect on the forearm muscles following impact. The mitigation of the force of impact is probably more importantly through shoulder abduction and extension and elbow flexion rather than action of the forearm muscles.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O<sub>2</sub>Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O<sub>2</sub>Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O<sub>2</sub>Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.
Resumo:
Mannose-6-phosphate isomerase (MPI) catalyzes the inter-conversion of mannose 6-phosphate and fructose 6-phosphate. X-ray crystal structures of MPI from Salmonella typhimurium in the apo form (with no metal bound) and in the holo form (with bound Zn2+) and two other structures with yttrium bound at an inhibitory site and complexed with Zn2+ and fructose 6-phosphate (F6P) were determined in order to gain insights into the structure and the isomerization mechanism. Isomerization involves acid/base catalysis with proton transfer between the C1 and C2 atoms of the substrate. His99, Lys132, His131 and Asp270 are close to the substrate and are likely to be the residues involved in proton transfer. The interactions observed at the active site suggest that the ring-opening step is probably catalyzed by His99 and Asp270. An active-site loop consisting of residues 130-133 undergoes conformational changes upon substrate binding. Zn2+ binding induces structural order in the loop consisting of residues 50-54. The metal atom appears to play a role in substrate binding and is probably also important for maintaining the architecture of the active site. Isomerization probably follows the previously suggested cis-enediol mechanism.
Resumo:
A new method of generating polynomials using microprocessors is proposed. The polynomial is generated as a 16-bit digital word. The algorithm for generating a variety of basic 'building block' functions and its implementation is discussed. A technique for generating a generalized polynomial based on the proposed algorithm is indicated. The performance of the proposed generator is evaluated using a commercially available microprocessor kit.
Resumo:
Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and "in progress," for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 59% (13) achieved complete control of the target pest, 18% (4) provided partial control, and 41% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 47% (24) are still in progress. For both categories of pests, some projects' success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (59% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active.