929 resultados para year one
Resumo:
Methyl esters were prepared by the clean, one-step catalytic esterification of primary alcohols using molecular oxygen as a green oxidant and a newly developed SiO(2)-supported gold nanoparticle catalyst. The catalyst was highly active and selective in a broad range of pressure and temperature. At 3 atm O(2) and 130 degrees C benzyl alcohol was converted to methyl benzoate with 100% conversion and 100% selectivity in 4 h of reaction. This catalytic process is much ""greener"" than the conventional reaction routes because it avoids the use of stoichiometric environmentally unfriendly oxidants, usually required for alcohol oxidation, and the use of strong acids or excess of reactants or constant removal of products required to shift the equilibrium to the desired esterification product.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
We report results of magnetoacoustic studies in the quantum spin-chain magnet NiCl(2)-4SC(NH(2))(2) (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c(33) mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T > T(N), where the thermodynamic properties are determined by fermionic magnetic excitations, the ""hallmark"" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a three-dimensional bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.
Resumo:
We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.
Resumo:
Motivated by the quasi-one-dimensional antiferromagnet CaV(2)O(4), we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV(2)O(4), we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.
Resumo:
We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic structures by using cold atoms trapped in a laser standing wave. By a fine-tuning of the periodicity, we reach the regime of multiple reflection due to the refractive index contrast between layers, yielding an unprecedented high reflectance efficiency of 80%. This result is explained by the occurrence of a photonic band gap in such systems, in accordance with previous predictions.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Resumo:
In this study, the one- and two-photon absorption spectra of seven azoaromatic compounds (five pseudostilbenes-type and two aminoazobenzenes) were theoretically investigated using the density functional theory combined with the response functions formalism. The equilibrium molecular structure of each compound was obtained at three different levels of theory: Hartree-Fock, density functional theory (DFT), and Moller-Plesset 2. The effect of solvent on the equilibrium structure and the electronic transitions of the compounds were investigated using the polarizable continuum model. For the one-photon absorption, the allowed pi ->pi(*) transition energy showed to be dependent on the molecular structures and the effect of solvent, while the n ->pi(*) and pi ->pi(*)(n) transition energies exhibited only a slight dependence. An inversion between the bands corresponding to the pi ->pi(*) and n ->pi(*) states due to the effect of solvent was observed for the pseudostilbene-type compounds. To characterize the allowed two-photon absorption transitions for azoaromatic compounds, the response functions formalism combined with DFT using the hybrid B3LYP and PBE0 functionals and the long-range corrected CAM-B3LYP functional was employed. The theoretical results support the previous findings based on the three-state model. The model takes into account the ground and two electronic excited states and has already been used to describe and interpret the two-photon absorption spectrum of azoaromatic compounds. The highest energy two-photon allowed transition for the pseudostilbene-type compounds shows to be more effectively affected (similar to 20%) by the torsion of the molecular structure than the lowest allowed transition (similar to 10%). In order to elucidate the effect of the solvent on the two-photon absorption spectra, the lowest allowed two-photon transition (dipolar transition) for each compound was analyzed using a two-state approximation and the polarizable continuum model. The results obtained reveal that the effect of solvent increases drastically the two-photon cross-section of the dipolar transition of the pseudostilbene-type compounds. In general, the features of both one- and two-photon absorption spectra of the azoaromatic compounds are well reproduced by the theoretical calculations.
Resumo:
Background: Worldwide, a high proportion of HIV-infected individuals enter into HIV care late. Here, our objective was to estimate the impact that late entry into HIV care has had on AIDS mortality rates in Brazil. Methodology/Principal Findings: We analyzed data from information systems regarding HIV-infected adults who sought treatment at public health care facilities in Brazil from 2003 to 2006. We initially estimated the prevalence of late entry into HIV care, as well as the probability of death in the first 12 months, the percentage of the risk of death attributable to late entry, and the number of avoidable deaths. We subsequently adjusted the annual AIDS mortality rate by excluding such deaths. Of the 115,369 patients evaluated, 50,358 (43.6%) had entered HIV care late, and 18,002 died in the first 12 months, representing a 16.5% probability of death in the first 12 months (95% CI: 16.3-16.7). By comparing patients who entered HIV care late with those who gained timely access, we found that the risk ratio for death was 49.5 (95% CI: 45.1-54.2). The percentage of the risk of death attributable to late entry was 95.5%, translating to 17,189 potentially avoidable deaths. Averting those deaths would have lowered the 2003-2006 AIDS mortality rate by 39.5%. Including asymptomatic patients with CD4(+) T cell counts >200 and <= 350 cells/mm(3) in the group who entered HIV care late increased this proportion by 1.8%. Conclusions/Significance: In Brazil, antiretroviral drugs reduced AIDS mortality by 43%. Timely entry would reduce that rate by a similar proportion, as well as resulting in a 45.2% increase in the effectiveness of the program for HIV care. The World Health Organization recommendation that asymptomatic patients with CD4(+) T cell counts <= 350 cells/mm(3) be treated would not have a significant impact on this scenario.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
The piperidone ring in the title compound, C(18)H(17)Cl(2)NOS(2), has a distorted half-chair conformation. The S-bound benzene rings are approximately perpendicular to and splayed out of the mean plane through the piperidone ring [dihedral angles = 71.86 (13) and 46.94 (11)degrees]. In the crystal, C-H center dot center dot center dot O interactions link the molecules into [010] supramolecular chains with a helical topology. C-H center dot center dot center dot Cl and C-H center dot center dot center dot pi interactions are also present.
Resumo:
The 1,3,4-oxadiazinane ring in the title compound, C(18)H(18)N(2)O(4), is in a twisted boat conformation. The two carbonyl groups are orientated towards the same side of the molecule. The dihedral angle between the planes of the benzene rings is 76.6 (3)degrees. Molecules are sustained in the three-dimensional structure by a combination of C-H center dot center dot center dot O, C-H center dot center dot center dot pi and pi-pi [shortest centroid-centroid distance = 3.672 (6) angstrom] interactions.
Resumo:
The 1,3,4-oxadiazinan-2-one ring in the title compound, C(12)H(13)ClN(2)O(3), is in a distorted half-chair conformation. The phenyl and chloroacetyl groups occupy axial and equatorial positions, respectively, and lie to the opposite side of the molecule to the N-bound methyl substituent. Molecules are consolidated in the crystal structure by C-H center dot center dot center dot O interactions.
Resumo:
The cyclohexanone ring in the title compound, C(13)H(16)O(3)S, is in a distorted chair conformation. The intramolecular S center dot center dot center dot O(carbonyl) distance is 2.814 (2) angstrom. Molecules are connected into a two-dimensional array via C-H center dot center dot center dot O contacts involving the carbonyl and sulfinyl O atoms.