959 resultados para whole rock analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Arctic Ocean System is a key player regarding the climatic changes of Earth. Its highly sensitive ice Cover, the exchange of surface and deep water masses with the global ocean and the coupling with the atmosphere interact directly with global climatic changes. The output of cold, polar water and sea ice influences the production of deep water in the North Atlantic and controls the global ocean circulation ("the conveyor belt"). The Arctic Ocean is surrounded by the large Northern Hemisphere ice sheets which not only affect the sedimentation in the Arctic Ocean but also are supposed to induce the Course of glacials and interglacials. Terrigenous sediment delivered from the ice sheets by icebergs and meltwater as well as through sea ice are major components of Arctic Ocean sediments. Hence, the terrigenous content of Arctic Ocean sediments is an outstanding archive to investigate changes in the paleoenvironment. Glazigenic sediments of the Canadian Arctic Archipelago and surface samples of the Arctic Ocean and the Siberian shelf regions were investigated by means of x-ray diffraction of the bulk fraction. The source regions of distinct mineral compositions were to be deciphered. Regarding the complex circumpolar geology stable christalline shield rocks, active and ancient fold belts including magmatic and metamorphic rocks, sedimentary rocks and wide periglacial lowlands with permafrost provide a complete range of possible mineral combinations. Non- glaciated shelf regions mix the local input from a possible point source of a particular mineral combination with the whole shelf material and function as a sampler of the entire region draining to the shelf. To take this into account, a literature research was performed. Descriptions of outcropping lithologies and Arctic Ocean sediments were scanned for their mineral association. The analyses of glazigenic and shelf sediments yielded a close relationship between their mineral composition and the adjacent source region. The most striking difference between the circumpolar source regions is the extensive outcrop of carbonate rocks in the vicinity of the Canadian Arctic Archipelago and in N Greenland while siliciclastic sediments dominate the Siberian shelves. In the Siberian shelf region the eastern Kara Sea and the western Laptev Sea form a destinct region defined by high smectite, (clino-) pyroxene and plagioclase input. The source of this signal are the extensive outcrops of the Siberian trap basalt in the Putorana Plateau which is drained by the tributaries of the Yenissei and Khatanga. The eastern Laptev Sea and the East Siberian Sea can also be treated as one source region containing a feldspar, quartz, illite, mica, and chlorite asscciation combined with the trace minerals hornblende and epidote. Franz Josef Land provides a mineral composition rich in quartz and kaolinite. The diverse rock suite of the Svalbard archipelago distributes specific mineral compositions of highly metamorphic christalline rocks, dolomite-rich carbonate rocks and sedimentary rocks with a higher diagenetic potential manifested in stable newly built diagenetic minerals and high organic maturity. To reconstruct the last 30,000 years as an example of the transition between glacial and interglacial conditions a profile of sediment cores, recovered during the RV Polarstern" expedition ARK-VIIIl3 (ARCTIC '91), and additional sediment cores around Svalbard were investigated. Besides the mineralogy of different grain size fractions several additional sedimentological and organo-geochemical Parameterswere used. A detailed stratigraphic framework was achieved. By exploiting this data set changes in the mineral composition of the Eurasian Basin sediments can be related to climatic changes. Certain mineral compositions can even be associated with particular transport processes, e.g. the smectitel pyroxene association with sea ice transport from the eastern Kara Sea and the western Laptev Sea. Hence, it is possible to decipher the complex interplay between the influx of warm Atlantic waters into the Southwest of the Eurasian Basin, the waxing and waning of the Svalbard1Barents- Sea- and Kara-Sea-Ice-Sheets, the flooding of the Siberian shelf regions and the surface and deep water circulation. Until now the Arctic Ocean was assumed to be a rather stable System during the last 30,000 years which only switched from a completely ice covered situation during the glacial to seasonally Open waters during the interglacial. But this work using mineral assemblages of sediment cores in the vicinity of Svalbard revealed fast changes in the inflow of warm Atlantic water with the Westspitsbergen Current (< 1000 years), short periods of advances and retreats of the marine based Eurasian ice sheets (1000-3000 years), and short melting phases (400 years?). Deglaciation of the marine-based Eurasian and the land-based north American and Greenland ice sheets are not simultaneous. This thesis postulates that the Kara Sea Ice Sheet released an early meltwater signal prior to 15,000 14C years leading the Barents Sea Ice Sheet while the western land-based ice sheets are following later than 13,500 14C years. The northern Eurasian Basin records the shift between iceberg and sea-ice material derived from the Canadian Arctic Archipelago and N-Greenland and material transported by sea-ice and surface currents from the Siberian shelf region. The phasing of the deglaciation becomes very obvious using the dolomite and quartd phyllosilicate record. It is also supposed that the flooding of the Laptev Sea during the Holocene is manifested in a stepwise increase of sediment input at the Lomonosov Ridge between the Eurasian and Amerasian Basin. Depending on the strength of meltwater pulses from the adjacent ice sheets the Transpolar Drift can probably be relocated. These movements are traceable by the distribution of indicator minerals. Based on the outcome of this work the feasibility of bulk mineral determination can be qualified as excellent tool for paleoenvironmental reconstructions in the Arctic Ocean. The easy preparation and objective determination of bulk mineralogy provided by the QUAX software bears the potential to use this analyses as basic measuring method preceding more time consuming and highly specialised mineralogical investigations (e.g. clay mineralogy, heavy mineral determination).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Bureau of Mines ..."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cover title.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"HWRIC project 88-043."