954 resultados para water resources


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid-structured, hydrologic model, was used to simulate the June-2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain-gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we analyze satellite-based daily rainfall observations to compare and contrast the wet and dry spell characteristics of tropical rainfall. Defining a wet (dry) spell as the number of consecutive rainy (nonrainy) days, we find that the distributions of wet spells appear to exhibit universality in the following sense. While both ocean and land regions with high seasonal rainfall accumulation (humid regions; e. g., India, Amazon, Pacific Ocean) show a predominance of 2-4 day wet spells, those regions with low seasonal rainfall accumulation (arid regions; e. g., South Atlantic, South Australia) exhibit a wet spell duration distribution that is essentially exponential in nature, with a peak at 1 day. The behavior that we observed for wet spells is reversed for the dry spell characteristics. In other words, the main contribution to the dry part of the season, in terms of the number of nonrainy days, appears to come from 3-4 day dry spells in the arid regions, as opposed to 1 day dry spells in the humid regions. The total rainfall accumulated in each wet spell has also been analyzed, and we find that the major contribution to seasonal rainfall for arid regions comes from 1-5 day wet spells; however, for humid regions, this contribution comes from wet spells of duration as long as 30 days. We also explore the role of chance as well as the influence of organized convection in determining some of the observed features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The predictability of a chaotic series is limited to a few future time steps due to its sensitivity to initial conditions and the exponential divergence of the trajectories. Over the years, streamflow has been considered as a stochastic system in many approaches. In this study, the chaotic nature of daily streamflow is investigated using autocorrelation function, Fourier spectrum, correlation dimension method (Grassberger-Procaccia algorithm) and false nearest neighbor method. Embedding dimensions of 6-7 obtained indicates the possible presence of low-dimensional chaotic behavior. The predictability of the system is estimated by calculating the system's Lyapunov exponent. A positive maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable with a maximum predictability of only 6 days. These results give a positive indication towards considering streamflow as a low dimensional chaotic system than as a stochastic system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study borrows the measures developed for the operation of water resources systems as a means of characterizing droughts in a given region. It is argued that the common approach of assessing drought using a univariate measure (severity or reliability) is inadequate as decision makers need assessment of the other facets considered here. It is proposed that the joint distribution of reliability, resilience, and vulnerability (referred to as RRV in a reservoir operation context), assessed using soil moisture data over the study region, be used to characterize droughts. Use is made of copulas to quantify the joint distribution between these variables. As reliability and resilience vary in a nonlinear but almost deterministic way, the joint probability distribution of only resilience and vulnerability is modeled. Recognizing the negative association between the two variables, a Plackett copula is used to formulate the joint distribution. The developed drought index, referred to as the drought management index (DMI), is able to differentiate the drought proneness of a given area when compared to other areas. An assessment of the sensitivity of the DMI to the length of the data segments used in evaluation indicates relative stability is achieved if the data segments are 5years or longer. The proposed approach is illustrated with reference to the Malaprabha River basin in India, using four adjoining Climate Prediction Center grid cells of soil moisture data that cover an area of approximately 12,000 km(2). (C) 2013 American Society of Civil Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integratedm odel is developed,b asedo n seasonailn puts of reservoiri nflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocationst o multiple crops.T he model is conceptuallym ade up of two modules. Module 1 is an intraseasonal allocation model to maximize the sum of relative yieldso f all crops,f or a givens tateo f the systemu, singl inear programming(L P). The module takes into account reservoir storage continuity, soil moisture balance, and crop root growthw ith time. Module 2 is a seasonaal llocationm odel to derive the steadys tate reservoiro peratingp olicyu sings tochastidc ynamicp rogramming(S DP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year.The resultso f module 1 and the transitionp robabilitieso f seasonailn flow and rainfall form the input for module 2. The use of seasonailn puts coupledw ith the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study,w hile affectinga dditionali mprovementsT. he model is applied to an existing reservoir in Karnataka State, India.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detalied study of the maonthly Convery river flows at the krishna raja sagara (KRS) reservoir is carried out by using the techniques of spectral analysis. The correlogram and power spectrum ate platted and used to identify the peridiocities inherent in the monthly inflows. The statistical significance of these periodicities is tested. Apart from the periodiocities at 12 months and 6 months, a significant of periodicity of 4 month was also observed in the monthly inflows. The analysis prepares ground for developing an appropriate stochastic model for the item series of the monthly flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiobjective fuzzy methodology is applied to a case study of Khadakwasla complex irrigation project located near Pune city of Maharashtra State, India. Three objectives, namely, maximization of net benefits, crop production and labour employment are considered. Effect of reuse of wastewater on the planning scenario is also studied. Three membership functions, namely, nonlinear, hyperbolic and exponential are analyzed for multiobjective fuzzy optimization. In the present study, objective functions are considered as fuzzy in nature whereas inflows are considered as dependable. It is concluded that exponential and hyperbolic membership functions provided similar cropping pattern for most of the situations whereas nonlinear membership functions provided different cropping pattern. However, in all the three cases, irrigation intensities are more than the existing irrigation intensity.