889 resultados para vision rehabilitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a structural design technique for rehabilitation robot intended for upper-limb post-stroke therapy. First, a novel approach to a rehabilitation robot is proposed and the features of the robot are explained. Second, the direct kinematics and the inverse kinematics of the proposed robot structure are derived. Finally, a mechanical design procedure is explained that achieves a compromise between the required motion range and assuring the workspace safety. The suitability of a portable escort type structure for upper limb rehabilitation of both acute and chronic stroke is discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The papers presented in this issue provide a glimpse of the International Conference on Disability, Virtual Reality and Associated Technologies (ICDVRAT) research community, illustrating advances in virtual reality and associated technologies facilitating interaction in physical and digital environments for individuals and practitioners in disability and rehabilitation. We hope that you will find this issue of interest and recommend this journal and use it to communicate this research to a broader public.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Movement disorders (MD) include a group of neurological disorders that involve neuromotor systems. MD can result in several abnormalities ranging from an inability to move, to severe constant and excessive movements. Strokes are a leading cause of disability affecting largely the older people worldwide. Traditional treatments rely on the use of physiotherapy that is partially based on theories and also heavily reliant on the therapists training and past experience. The lack of evidence to prove that one treatment is more effective than any other makes the rehabilitation of stroke patients a difficult task. UL motor re-learning and recovery levels tend to improve with intensive physiotherapy delivery. The need for conclusive evidence supporting one method over the other and the need to stimulate the stroke patient clearly suggest that traditional methods lack high motivational content, as well as objective standardised analytical methods for evaluating a patient's performance and assessment of therapy effectiveness. Despite all the advances in machine mediated therapies, there is still a need to improve therapy tools. This chapter describes a new approach to robot assisted neuro-rehabilitation for upper limb rehabilitation. Gentle/S introduces a new approach on the integration of appropriate haptic technologies to high quality virtual environments, so as to deliver challenging and meaningful therapies to people with upper limb impairment in consequence of a stroke. The described approach can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. Two identical prototypes have undergone extended clinical trials in the UK and Ireland with a cohort of 30 stroke subjects. From the lessons learnt with the Gentle/S approach, it is clear also that high quality therapy devices of this nature have a role in future delivery of stroke rehabilitation, and machine mediated therapies should be available to patient and his/her clinical team from initial hospital admission, through to long term placement in the patient's home following hospital discharge.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For individuals with upper-extremity motor disabilities, the head-stick is a simple and intuitive means of performing manipulations because it provides direct proprioceptive information to the user. Through practice and use of inherent proprioceptive cues, users may become quite adept at using the head-stick for a number of different tasks. The traditional head-stick is limited, however, to the user's achievable range of head motion and force generation, which may be insufficient for many tasks. The authors describe an interface to a robot system which emulates the proprioceptive qualities of a traditional head-stick while also allowing for augmented end-effector ranges of force and motion. The design and implementation of the system in terms of coordinate transforms, bilateral telemanipulator architecture, safety systems, and system identification of the master is described, in addition to preliminary evaluation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.