841 resultados para viscosity solutions
Resumo:
Injection metering systems are an important option for the development of pesticide application equipment, with advantages relating to minimising the need for disposal of unused pesticide, improving the ease of cleaning and optimising the accuracy of chemical application. For all injection systems, characteristics such as the steady-state accuracy of delivered dose, dose stability and the time response for dose step changes are related to the ability of the system to operate with different chemical formulations. A system designed to inject liquids should be able to accommodate changes in viscosity and density. The aim of this study was to develop a methodology for testing chemical injection systems using liquids with different viscosities. The experimental arrangement simulating applications with injection metering systems used dye and salt solutions as tracers. Tests were conducted to analyse the influence of salt on the characteristics of the water and a viscous solution. Results showed that the salt interfered with the dye stability in the water solution. In tests with a viscous test liquid, the salt was introduced at different steps during the mixing process, providing four different liquids to be analysed in terms of viscosity, density and pH. Some differences in liquid characteristics were found which could influence the performance of the injection systems.
Resumo:
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.
Resumo:
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
Resumo:
Hydrogen evolution reaction was studied on Ni-Zn (25% of Ni before leaching) in 1 M NaOH at 25 degrees C. These electrodes were characterized by very low Tafel slopes of 67 mV dec(-1). Other techniques used included potential and current pulse, potential relaxation in an open circuit, and ac impedance spectroscopy. Analysis of the experimental results led to the conclusion that hydrogen adsorption in the surface layers was responsible for the observed behavior. Influence of the oxidation of the electrode surface and the addition of poisons, thiourea and cyanides, were also studied. These processes inhibit the hydrogen absorption and restore ''normal'' Tafel slopes. Kinetic parameters of the hydrogen evolution reaction were determined.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A new synthetic route for producing monodispersed and single crystal acicular goethite particles with small particle size and a high axial ratio adequate for use as a high density magnetic recording media precursor is reported. It essentially consists of the hydrolysis of alkaline Fe-III suspensions in the presence of carbonate by a three-step procedure, the formation of ferrihydrite primary particles, the ferrihydrite dissolution and nucleation of goethite, and the growth of the goethite nuclei. Changing the temperature of heating during ageing achieved a separation of the two last stages. X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and surface area data have been used to determine the mechanism responsible for the formation of goethite particles with controlled size and shape. The best conditions to prepare monodispersed goethite particles have been established. The results show that uniform goethite particles of (a) 60 nm length with an axial ratio of 6 and (b) 230 nm length with a high axial ratio of 10, can be obtained by using an [OH]/[Fe] molar ratio of 0.35 in the initial suspensions with carbonate or sodium hydroxide, respectively. The [OH]/[Fe] molar ratio determines the particle size and elongation by controlling the hydrolysis reaction rate, while the carbonate ions promote a constant [OH] in the solution, keeping the pH around 10 during the entire synthesis process. This procedure, associated with the appropriate temperature control, leads, under certain conditions, to highly homogeneous goethite particles with sizes smaller than those obtained using sodium hydroxide with the same [OH]/[Fe] ratio.
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of soursop pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp theological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders (length and diameter) - were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The high precision attained by cosmological data in the last few years has increased the interest in exact solutions. Analytic expressions for solutions in the Standard Model are presented here for all combinations of Lambda = 0, Lambda not equal 0, kappa = 0, and kappa = 0, in the presence and absence of radiation and nonrelativistic matter. The most complete case (here called the Lambda gamma CDM Model) has Lambda not equal 0, kappa not equal 0, and supposes the presence of radiation and dust. It exhibits clearly the recent onset of acceleration. The treatment includes particular models of interest such as the Lambda CDM Model (which includes the cosmological constant plus cold dark matter as source constituents).
Resumo:
Crack-free polycrystalline PLZT (Pb,a)(Zr,Ti)O-3 thin films with the perovskite structure were prepared by dir-coating using the Pechinis process. Lead acetate, hydrated lanthanum carbonate, zirconium n-propoxide and titanium isopropoxide were used as raw materials. The viscosity of the solution was adjusted in the range of 20 to 56 cP and the films were deposited by a dip-coating process on silicon (100) as substrate. Solutions with ionic concentration of 0.1 and 0.2 M were used. Thin film deposition was accomplished by dipping the substrates in the solution with control of withdrawal speed from 5 to 20 mm/min. The thin films were thermally treated in two steps: at 300 degreesC amid 650 degreesC. The influence of withdrawal speed. viscosity, heating rate and ionic concentration on the morphology of PLZT thin film was discussed. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of potentiodynamically formed thin anodic films of polycrystalline tin in aqueous sodium bicarbonate solutions (pH approximate to 8.3) were studied using cyclic voltammetry and electrochemical impedance spectroscopy. Different equivalent circuits corresponding to various potential regions were employed to account for the electrochemical processes taking place under each condition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The planning of the transportation sector in Brazil has long been the railroads as the main engineering system of the country. Thus, it was used to carry, in addition to the physical integration of the national territory, the consolidation of its domestic market. However, after entering in the 1980s, the planning of the sector is left out, and an inversion of the matrix of development is observed, with share gains in monoculture economy and on development of new areas where agricultural expansion advanced. This situation culminated in logistics blackouts in the 1990s and the resumption of sector planning in the early twenty-first century. At this time, it establishes a new institutional apparatus that ensures the participation of private capital in the sector, as well as a new principle for resolving bottlenecks concentrated regions (economically dynamic), from targeting investments to areas of primary economies that only in recent decades have been incorporated into the national economy.