960 resultados para vertical inversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Egger (2008) constructs some idealised experiments to test the usefulness of piecewise potential vorticity inversion (PPVI) in the diagnosis of Rossby wave dynamics and baroclinic development. He concludes that, ``PPVI does not help us to understand the dynamics of linear Rossby waves. It provides local tendencies of the streamfunction which are unrelated to the true ones. The same way, the motion of baroclinic waves in shear flow cannot be understood by using PPVI. Moreover, the effect of boundary temperatures as determined by PPVI is unrelated to the flow evolution.'' He goes further in arguing that we should not consider velocities as ``induced'' by PV anomalies defined by carving up the global domain. However, these conclusions partly reflect the limitations of his idealised experiments and the manner in which the PV components were partitioned from one another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the response to anthropogenic forcing, there is a well-known enhanced warming at low levels over the northern polar cap in winter. This means that there is a strong baroclinic component to the response. The projection of the response onto a NAM-like zonal index varies with height. While at the surface most models project positively onto the zonal index, throughout most of the depth of the troposphere many of the models give negative projections. The response to anthropogenic forcing therefore has a distinctive baroclinic signature which is very different to the NAM

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the Arctic polar vortex during observed major mid-winter stratospheric sudden warmings (SSWs) is investigated for the period 1957-2002, using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Ertel’s potential vorticity (PV) and temperature fields. Time-lag composites of vertically weighted PV, calculated relative to the SSW onset time, are derived for both vortex displacement SSWs and vortex splitting SSWs, by averaging over the 15 recorded displacement and 13 splitting events. The evolving vertical structure of the polar vortex during a typical SSW of each type is clearly illustrated by plotting an isosurface of the composite PV field, and is shown to be very close to that observed during representative individual events. Results are verified by comparison with an elliptical diagnostic vortex moment technique. For both types of SSW, little variation is found between individual events in the orientation of the developing vortex relative to the underlying topography, i.e. the location of the vortex during SSWs of each type is largely fixed in relation to the Earth’s surface. During each type of SSW, the vortex is found to have a distinctive vertical structure. Vortex splitting events are typically barotropic, with the vortex split occurring near-simultaneously over a large altitude range (20-40 km). In the majority of cases, of the two daughter vortices formed, it is the ‘Siberian’ vortex that dominates over its ‘Canadian’ counterpart. In contrast, displacement events are characterized by a very clear baroclinic structure; the vortex tilts significantly westward with height, so that the top and bottom of the vortex are separated by nearly 180◦ longitude before the upper vortex is sheared away and destroyed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous operation of insect-monitoring radars in the UK has permitted, for the first time, the characterization of various phenomena associated with high-altitude migration of large insects over this part of northern Europe. Previous studies have taken a case-study approach, concentrating on a small number of nights of particular interest. Here, combining data from two radars, and from an extensive suction- and light-trapping network, we have undertaken a more systematic, longer-term study of diel flight periodicity and vertical distribution of macro-insects in the atmosphere. Firstly, we identify general features of insect abundance and stratification, occurring during the 24-hour cycle, which emerge from four years’ aggregated radar data for the summer months in southern Britain. These features include mass emigrations at dusk and to a lesser extent at dawn, and daytime concentrations associated with thermal convection. We then focus our attention on the well-defined layers of large nocturnal migrants that form in the early evening, usually at heights of 200–500 m above ground. We present evidence from both radar and trap data that these nocturnal layers are composed mainly of noctuid moths, with species such as Noctua pronuba, Autographa gamma, Agrotis exclamationis, A. segetum, Xestia c-nigrum and Phlogophora meticulosa predominating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the results of a laboratory investigation using a rotating two-layer annulus experiment, which exhibits both large-scale vortical modes and short-scale divergent modes. A sophisticated visualization method allows us to observe the flow at very high spatial and temporal resolution. The balanced long-wavelength modes appear only when the Froude number is supercritical (i.e. $F\,{>}\,F_\mathrm{critical}\,{\equiv}\, \upi^2/2$), and are therefore consistent with generation by a baroclinic instability. The unbalanced short-wavelength modes appear locally in every single baroclinically unstable flow, providing perhaps the first direct experimental evidence that all evolving vortical flows will tend to emit freely propagating inertia–gravity waves. The short-wavelength modes also appear in certain baroclinically stable flows. We infer the generation mechanisms of the short-scale waves, both for the baro-clinically unstable case in which they co-exist with a large-scale wave, and for the baroclinically stable case in which they exist alone. The two possible mechanisms considered are spontaneous adjustment of the large-scale flow, and Kelvin–Helmholtz shear instability. Short modes in the baroclinically stable regime are generated only when the Richardson number is subcritical (i.e. $\hbox{\it Ri}\,{<}\,\hbox{\it Ri}_\mathrm{critical}\,{\equiv}\, 1$), and are therefore consistent with generation by a Kelvin–Helmholtz instability. We calculate five indicators of short-wave generation in the baroclinically unstable regime, using data from a quasi-geostrophic numerical model of the annulus. There is excellent agreement between the spatial locations of short-wave emission observed in the laboratory, and regions in which the model Lighthill/Ford inertia–gravity wave source term is large. We infer that the short waves in the baroclinically unstable fluid are freely propagating inertia–gravity waves generated by spontaneous adjustment of the large-scale flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global atmospheric electrical circuit sustains a vertical current density between the ionosphere and the Earth's surface, the existence of which is well-established from measurements made in fair-weather conditions. In overcast, but non-thunderstorm, non-precipitating conditions, the current travels through the cloud present, despite cloud layers having low electrical conductivity. For extensive layer clouds, this leads to space charge at the upper and lower cloud boundaries. Using a combination of atmospheric electricity and solar radiation measurements at three UK sites, vertical current measurements have been categorised into clear, broken, and overcast cloud conditions. This approach shows that the vertical “fair weather” current is maintained despite the presence of cloud. In fully overcast conditions with thick cloud, the vertical current is reduced compared to thin cloud overcast conditions, associated with the cloud's resistance contributions. Contribution of cloud to the columnar resistance depends both on cloud thickness, and the cloud's height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv. Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity” are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position—gaze direction, convergence, torsion, cyclovergence, and vertical misalignment—can be derived from the vertical disparity field and its derivatives at the fovea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difference between cirrus emissivities at 8 and 11 μm is sensitive to the mean effective ice crystal size of the cirrus cloud, De. By using single scattering properties of ice crystals shaped as planar polycrystals, diameters of up to about 70 μm can be retrieved, instead of up to 45 μm assuming spheres or hexagonal columns. The method described in this article is used for a global determination of mean effective ice crystal sizes of cirrus clouds from TOVS satellite observations. A sensitivity study of the De retrieval to uncertainties in hypotheses on ice crystal shape, size distributions, and temperature profiles, as well as in vertical and horizontal cloud heterogeneities shows that uncertainties can be as large as 30%. However, the TOVS data set is one of few data sets which provides global and long-term coverage. Having analyzed the years 1987–1991, it was found that measured effective ice crystal diameters De are stable from year to year. For 1990 a global median De of 53.5 μm was determined. Averages distinguishing ocean/land, season, and latitude lie between 23 μm in winter over Northern Hemisphere midlatitude land and 64 μm in the tropics. In general, larger Des are found in regions with higher atmospheric water vapor and for cirrus with a smaller effective emissivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 3 in a series, deals with symmetry notation referring to groups that involve nuclear permutations and the inversion operation. Further parts will follow, dealing inter alia with vibration-rotation spectroscopy and electronic spectroscopy.