996 resultados para verification algorithm
Resumo:
To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated.
Resumo:
The electronic absorption of EL2 centers has been clarified to be related to the electron acid hole photoionizations, and the transition from its ground state to metastable state, respectively. Under an illumination with a selected photon energy in the near infrared region, these three processes with different optical cross sections will show different kinetics against the illumination time. It has recently been shown that the photosensitivity (measured under 1.25 eV illumination) of the local vibrational mode absorption induced by some deep defect centers in SI-GaAs is a consequence of the electron and hole photoionizations of EL2. This paper directly measures the kinetics of the electronic transition associated with EL2 under 1.25 eV illumination, which implies the expected charge transfer among different charge states of the EL2 center. A calculation based on a simple rate equation model is in good agreement with the experimental results.
Resumo:
An improved BP algorithm for pattern recognition is proposed in this paper. By a function substitution for error measure, it resolves the inconsistency of BP algorithm for pattern recognition problems, i.e. the quadratic error is not sensitive to whether the training pattern is recognized correctly or not. Trained by this new method, the computer simulation result shows that the convergence speed is increased to treble and performance of the network is better than conventional BP algorithm with momentum and adaptive step size.
Resumo:
A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 mu rad/root Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.
Resumo:
Tianjin University of Technology
Resumo:
University of Twente; Centre for Telematics and Information Technology; Netherlands Organisation for Scientific Research; Jacquard; Capgemini