956 resultados para vascular hemodynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Paclitaxel-eluting stents (PES) have been shown to reduce the rate of restenosis and the need for repeated revascularization procedures compared with bare metal stents. However, long-term effects of paclitaxel on vascular function are unknown. The purpose of the present study was to assess coronary vasomotor response to exercise after paclitaxel-eluting stent implantation. METHODS: Coronary vasomotion was evaluated by biplane quantitative coronary angiography at rest and during supine bicycle exercise in 27 patients with coronary artery disease. Twelve patients were treated with a bare metal stent (controls), and fifteen patients with a paclitaxel-eluting stent. All patients were restudied 6+/-2 (range 2-12) months after stent implantation. Minimal luminal diameter, stent diameter, proximal, distal and a reference vessel diameter were determined. RESULTS: Reference vessels showed exercise-induced vasodilation in both groups (+20+/-5% controls; +26+/-3% PES group). Vasomotion within the stented vessel segments was abolished. In the controls, the adjacent segments proximal and distal to the stent showed exercise-induced vasodilation (+17+/-3% and +24+/-4%). In contrast, there was exercise-induced vasoconstriction of the proximal and distal vessel segments adjacent to the paclitaxel-eluting stent (-13+/-6% and -18+/-4%; p<0.005). After sublingual nitroglycerin, the proximal and distal vessel segments dilated in both groups. Exercise-induced vasoconstriction adjacent to paclitaxel-eluting stent correlated inversely with the time interval after stent implantation. CONCLUSIONS: Paclitaxel-eluting stent implantation is associated with exercise-induced vasoconstriction in the persistent region suggesting endothelial dysfunction as the underlying mechanism. Improvement of vascular function occurs over time, indicating delayed vascular healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major progress has recently been made in the neuro-imaging of stroke as a result of improvements in imaging hardware and software. Imaging may be based on either magnetic resonance imaging (MRI) or computed tomography (CT) techniques. Imaging should provide information on the entire vascular cervical and intracranial network, from the aortic arch to the circle of Willis. Equally, it should also give information on the viability of brain tissue and brain hemodynamics. CT has the advantage in the detection of acute hemorrhage whereas MRI offers more accurate pathophysiological information in the follow-up of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Thoracic epidural analgesia (TEA) is increasingly used for perioperative analgesia. If patients with TEA develop sepsis or systemic inflammatory response subsequent to extended surgery the question arises if it would be safe to continue TEA with its beneficial effects of improving gastrointestinal perfusion and augmenting tissue oxygenation. A major concern in this regard is hemodynamic instability that might ensue from TEA-induced vasodilation. The objective of the present study was to assess the effects of TEA on systemic and pulmonary hemodynamics in a sepsis model of hyperdynamic endotoxemia. METHODS: After a baseline measurement in healthy sheep (n = 14), Salmonella thyphosa endotoxin was continuously infused at a rate of 10 ngxkg(-1)xmin(-1) over 16 hours. The surviving animals (n = 12) were then randomly assigned to 1 of 2 study groups. In the treatment group (n = 6), continuous TEA was initiated with 0.1 mLxkg(-1) bupivacaine 0.125% and maintained with 0.1 mLxkg(-1)xh(-1). In the control group (n = 6) the same amount of isotonic sodium saline solution was injected at the same rate through the epidural catheter. RESULTS: In both experimental groups cardiac index increased and systemic vascular resistance decreased concurrently (each P < .05). Functional epidural blockade in the TEA group was confirmed by sustained suppression of the cutaneous (or panniculus) reflex. During the observational period of 6 hours neither systemic nor pulmonary circulatory variables were impaired by TEA. CONCLUSIONS: From a hemodynamic point of view, TEA presents as a safe treatment option in sepsis or systemic inflammatory response syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical studies evaluating the use of phenylephrine in septic shock are lacking. The present study was designed as a prospective, crossover pilot study to compare the effects of norepinephrine (NE) and phenylephrine on systemic and regional hemodynamics in patients with catecholamine-dependent septic shock. In 15 septic shock patients, NE (0.82 +/- 0.69 mug.kg.min) was replaced with phenylephrine (4.39 +/- 5.23 mug.kg.min) titrated to maintain MAP between 65 and 75 mmHg. After 8 h of phenylephrine infusion treatment was switched back to NE. Data from right heart catheterization, acid-base balance, thermo-dye dilution catheter, gastric tonometry, and renal function were obtained before, during, and after replacing NE with phenylephrine. Variables of systemic hemodynamics, global oxygen transport, and acid-base balance remained unchanged after replacing NE with phenylephrine except for a significant decrease in heart rate (phenylephrine, 89 +/- 18 vs. NE, 93 +/- 18 bpm; P < 0.05). However, plasma disappearance rate (phenylephrine, 13.5 +/- 7.1 vs. NE, 16.4 +/- 8.7%.min) and clearance of indocyanine green (phenylephrine, 330 +/- 197 vs. NE, 380 +/- 227mL.min.m), as well as creatinine clearance (phenylephrine, 81.3 +/- 78.4 vs. NE, 94.3 +/- 93.5 mL.min) were significantly decreased by phenylephrine infusion (each P < 0.05). In addition, phenylephrine increased arterial lactate concentrations as compared with NE infusion (1.7 +/- 1.0 vs. 1.4 +/- 1.1 mM; P < 0.05). After switching back to NE, all variables returned to values obtained before phenylephrine infusion except creatinine clearance and gastric tonometry values. Our results suggest that for the same MAP, phenylephrine causes a more pronounced hepatosplanchnic vasoconstriction as compared with NE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Vasa vasorum (VV) have been implicated to play a role in the pathogenesis of atherosclerosis. This study was designed to describe the distribution of VV density in different vascular beds in humans and to investigate the association between VV density and the known distribution of atherosclerosis in human arteries. METHODS: Forty-two human arteries, harvested at autopsy or after explantation, were analyzed by three-dimensional microscopic-computed tomography (micro-CT). VV density, endothelial-surface-fraction (Sigma VV endothelial-surface-area/vessel-wall-volume) and vascular-area-fraction (Sigma VV area/vessel-wall-area) were calculated for coronary, renal and femoral arteries. Representatively five coronary, renal and femoral arteries were stained for endothelial cells (von Willebrand-Factor), macrophages (CD68), vascular endothelial growth factor (VEGF) and collagen (Sirius Red). RESULTS: Coronary arteries showed a higher VV density compared to renal and femoral arteries (2.12+/-0.26 n/mm(2) versus 0.61+/-0.06 n/mm(2) and 0.66+/-0.11 n/mm(2); P<0.05 for both) as well as a higher endothelial-surface-fraction and vascular-area-fraction. Histology showed a positive correlation between histologically derived VV density and CD68-positive cells/area (r=0.54, P<0.01), VEGF-immunoreactivity/area (r=0.55, P<0.01) and a negative correlation between VV density and collagen I content (r=0.66, P<0.05). CONCLUSION: This micro-CT study highlights a higher VV density in coronary than in peripheral arteries, supporting the relation between VV density and the susceptibility to atherosclerosis in different vascular beds in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vitamin D(3) and nicotine (VDN) model is a model of isolated systolic hypertension (ISH) due to arterial calcification raising arterial stiffness and vascular impedance similar to an aged and stiffened arterial tree. We therefore analyzed the impact of this aging model on normal and diseased hearts with myocardial infarction (MI). Wistar rats were treated with VDN (n = 9), subjected to MI by coronary ligation (n = 10), or subjected to a combination of both MI and VDN treatment (VDN/MI, n = 14). A sham-treated group served as control (Ctrl, n = 10). Transthoracic echocardiography was performed every 2 wk, whereas invasive indexes were obtained at week 8 before death. Calcium, collagen, and protein contents were measured in the heart and the aorta. Systolic blood pressure, pulse pressure, thoracic aortic calcium, and end-systolic elastance as an index of myocardial contractility were highest in the aging model group compared with MI and Ctrl groups (P(VDN) < 0.05, 2-way ANOVA). Left ventricular wall stress and brain natriuretic peptide (P(VDNxMI) = not significant) were highest, while ejection fraction, stroke volume, and cardiac output were lowest in the combined group versus all other groups (P(VDNxMI) < 0.05). The combination of ISH due to this aging model and MI demonstrates significant alterations in cardiac function. This model mimics several clinical phenomena of cardiovascular aging and may thus serve to further study novel therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.