916 resultados para uses
Resumo:
Understanding consumer value is imperative in health care as the receipt of value drives the demand for health care services. While there is increasing research into health-care that adopts an economic approach to value, this paper investigates a non-financial exchange context and uses an experiential approach to value, guided by a social marketing approach to behaviour change. An experiential approach is deemed more appropriate for government health-care services that are free and for preventative rather than treatment purposes. Thus instead of using an illness-paradigm to view health services outcomes, we adopt a wellness paradigm. Using qualitative data gathered during 25 depth interviews the authors demonstrate how social marketing thinking has guided the identification of six themes that represent four dimensions of value (functional, emotional, social and altruistic) evident during the health care consumption process of a free government service.
Resumo:
This paper describes a scene invariant crowd counting algorithm that uses local features to monitor crowd size. Unlike previous algorithms that require each camera to be trained separately, the proposed method uses camera calibration to scale between viewpoints, allowing a system to be trained and tested on different scenes. A pre-trained system could therefore be used as a turn-key solution for crowd counting across a wide range of environments. The use of local features allows the proposed algorithm to calculate local occupancy statistics, and Gaussian process regression is used to scale to conditions which are unseen in the training data, also providing confidence intervals for the crowd size estimate. A new crowd counting database is introduced to the computer vision community to enable a wider evaluation over multiple scenes, and the proposed algorithm is tested on seven datasets to demonstrate scene invariance and high accuracy. To the authors' knowledge this is the first system of its kind due to its ability to scale between different scenes and viewpoints.
Resumo:
Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
Urban expansion continues to encroach on once isolated sewerage infrastructure. In this context,legislation and guidelines provide limited direction to the amenity allocation of appropriate buffer distances for land use planners and infrastructure providers. Topography, wind speed and direction,temperature, humidity, existing land uses and vegetation profiles are some of the factors that require investigation in analytically determining a basis for buffer separations. This paper discusses the compilation and analysis of six years of Logan sewerage odour complaint data. Graphically,relationships between the complaints, topographical features and meteorological data are presented. Application of a buffer sizing process could assist planners and infrastructure designers alike, whilst automatically providing extra green spaces. Establishing a justifiable criterion for buffer zone allocations can only assist in promoting manageable growth for healthier and more sustainable communities.
Resumo:
Investigating Literacy Years 4-9: A pilot acknowledges that the literacy required of students in the middle years of schooling changes as they begin to read and write to learn across the subject areas using various resources and media. Teachers begin to look for evidence of understanding of concepts, content details, appropriate genre uses and the capacity to work with extended and complex texts. Yet, in comparison to the early years, there has been relatively little research conducted during this period of schooling, especially Years 4-7 of primary schooling (Comber et al, 2002). However, evidence suggests that gaps between those who perform highly and those who perform poorly on standardised measures of literacy increase rather than decrease, and these gaps relate to social background. Hence there is a need to investigate how different school communities with diverse student populations design rich curriculum at these stages of schooling and explicitly teach young people to handle new and changing literacy demands.
Resumo:
People all over the world are regularly hit by floods, cyclones, and other natural disasters. Many use smart phones and social media to stay connected, seek help, improvise, and cope with crises or challenging situations. This column discusses these practices after dark or during disasters to unveil challenges and opportunities for innovative designs that increase resilience and safety.
Resumo:
This research compares Chinese HRM with Western HRM, particularly in the areas of development of HR information systems (HRIS) and HR measurement systems and their relation to HRs involvement as a strategic partner in firms. The research uses a 3-stage model of HRIS (workforce profiling, business insight, and strategic driver) based on studies of Irmer and Ellerby (2005) and Boudreau and Ramstad (2003) to compare the relative stages of development of Chinese and Western HRM. The quantitative aspect of the study comprises a survey of senior HR practitioners from 171 Chinese firms whose data is compared with data from Irmer and Ellerbys study of Australian and U.S. HRM (2005) and Lawler et als series of studies of U.S firms (1995, 1998, 2001, 2004). The main results of the comparison are that Chinese HRM generally lags behind Western HRM. In particular, Chinese HR professionals allocate less time to strategic activities and their roles are less strategic than those of Western HR professionals. The HR measurement systems of Chinese firms are more limited in function, and the HR information systems of Chinese companies are less automated and integrated. However there is also evidence of a two speed HR system in China with a small proportion of firms having highly sophisticated HR systems but with a much larger proportion of Chinese firms than in the West having only the most basic HR information systems. This two speed system is in part attributable to a split between the relatively advanced HR systems of large State Owned Enterprises and the basic systems that predominate in smaller, growing Local Private firms. The survey study is complemented by a series of interviews with a number of senior Chinese HR practitioners who provide richer insights into their experiences and the challenges they face in contemporary Chinese firms.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The Scratch Online Community is a space that enables young people to share their creative digital projects internationally with a level of ease that was impossible only a few years ago. Like all creative communities, Scratch is not just a space for sharing products, work, techniques and tips and tricks, but also a space for social interaction. Media literacy educators have unprecedented challenges and opportunities in digital environments like Scratch to harness the vast amount of knowledge in the community to enhance students learning. They also have challenges and opportunities in terms of implementing a form of digital media literacy education that is responsive to social and cultural representation. One role of digital media literacy is to help young people to challenge unfair and derogatory portrayals of people and to break down processes of social and cultural othering so that all community members feel included and safe to express themselves. This article considers how online community spaces might draw on social interaction to enhance cross-cultural understandings and learning through dialogue and creative practice. The article uses statistics to indicate the amount of international interaction in the Scratch community. It then uses qualitative analysis of forum discussions and creative digital work to analyse the types of cross cultural interaction that occurs.
Resumo:
AbstractComputational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.
Resumo:
Purpose: The purpose of this paper is to identify changes in bank lending criteria due to the GFC and to explore the associated impacts on new housing supply in Queensland, Australia. Design/methodology/approach: This research involves a survey of each of Australias big four banks, as well as two prominent arrangers of development finance. Data on key lending criteria was collected: Pre GFC, during the GFC, and GFC recovery stage. Findings: The GFC has resulted in a retraction of funds available for residential development. The few institutions lending are filtering out only the best credit risks by way of constrictive loan covenants including: low loan to value ratios, high cash equity requirements, regional no go zones, and demonstrated borrower track record. The ability of developers to proceed with new housing developments is being constrained by their inability to obtain sufficient finance. Research limitations/implications: This research uses survey data, together with an understanding of the project finance process to extrapolate impacts on the residential development industry across Queensland. No regional or sub-market analysis is included. Future research will include subsequent surveys to track any loosening of credit policies over time and sub-market sector analysis. Practical implications: The inability to obtain project finance is identified as a key constraint to new housing supply. This research will inform policy makers and provide important quantitative evidence of the importance of availability of development finance in the housing supply chain. Social implications: Queensland is facing a supply shortfall, which if not corrected, may lead to upward pressure on house prices and falling housing affordability. Originality/value: There is very little academic research on development funding. This research is unique in linking bank lending criteria to new housing supply and demonstrating the impact on the development industry.
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunettis keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.
Resumo:
A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.
Resumo:
This research explores music in space, as experienced through performing and music-making with interactive systems. It explores how musical parameters may be presented spatially and displayed visually with a view to their exploration by a musician during performance. Spatial arrangements of musical components, especially pitches and harmonies, have been widely studied in the literature, but the current capabilities of interactive systems allow the improvisational exploration of these musical spaces as part of a performance practice. This research focuses on quantised spatial organisation of musical parameters that can be categorised as grid music systems (GMSs), and interactive music systems based on them. The research explores and surveys existing and historical uses of GMSs, and develops and demonstrates the use of a novel grid music system designed for whole body interaction. Grid music systems provide plotting of spatialised input to construct patterned music on a two-dimensional grid layout. GMSs are navigated to construct a sequence of parametric steps, for example a series of pitches, rhythmic values, a chord sequence, or terraced dynamic steps. While they are conceptually simple when only controlling one musical dimension, grid systems may be layered to enable complex and satisfying musical results. These systems have proved a viable, effective, accessible and engaging means of music-making for the general user as well as the musician. GMSs have been widely used in electronic and digital music technologies, where they have generally been applied to small portable devices and software systems such as step sequencers and drum machines. This research shows that by scaling up a grid music system, music-making and musical improvisation are enhanced, gaining several advantages: (1) Full body location becomes the spatial input to the grid. The system becomes a partially immersive one in four related ways: spatially, graphically, sonically and musically. (2) Detection of body location by tracking enables hands-free operation, thereby allowing the playing of a musical instrument in addition to playing the grid system. (3) Visual information regarding musical parameters may be enhanced so that the performer may fully engage with existing spatial knowledge of musical materials. The result is that existing spatial knowledge is overlaid on, and combined with, music-space. Music-space is a new concept produced by the research, and is similar to notions of other musical spaces including soundscape, acoustic space, Smalley's circumspace and immersive space (2007, 48-52), and Lotis's ambiophony (2003), but is rather more textural and aliveand therefore very conducive to interaction. Music-space is that space occupied by music, set within normal space, which may be perceived by a person located within, or moving around in that space. Music-space has a perceivable texture made of tensions and relaxations, and contains spatial patterns of these formed by musical elements such as notes, harmonies, and sounds, changing over time. The music may be performed by live musicians, created electronically, or be prerecorded. Large-scale GMSs have the capability not only to interactively display musical information as music representative space, but to allow music-space to co-exist with it. Moving around the grid, the performer may interact in real time with musical materials in music-space, as they form over squares or move in paths. Additionally he/she may sense the textural matrix of the music-space while being immersed in surround sound covering the grid. The HarmonyGrid is a new computer-based interactive performance system developed during this research that provides a generative music-making system intended to accompany, or play along with, an improvising musician. This large-scale GMS employs full-body motion tracking over a projected grid. Playing with the system creates an enhanced performance employing live interactive music, along with graphical and spatial activity. Although one other experimental system provides certain aspects of immersive music-making, currently only the HarmonyGrid provides an environment to explore and experience music-space in a GMS.