932 resultados para two-dimensional electron gas
Resumo:
We experimentally demonstrate a sigmoidal variation of the composition profile across semiconductor heterointerfaces. The wide range of material systems (III-arsenides, III-antimonides, III-V quaternary compounds, III-nitrides) exhibiting such a profile suggests a universal behavior. We show that sigmoidal profiles emerge from a simple model of cooperative growth mediated by twodimensional island formation, wherein cooperative effects are described by a specific functional dependence of the sticking coefficient on the surface coverage. Experimental results confirm that, except in the very early stages, island growth prevails over nucleation as the mechanism governing the interface development and ultimately determines the sigmoidal shape of the chemical profile in these two-dimensional grown layers. In agreement with our experimental findings, the model also predicts a minimum value of the interfacial width, with the minimum attainable value depending on the chemical identity of the species.
Resumo:
This paper presents the development and application of the p-adaptive BIEM version in elastostatics. The basic concepts underlying the p-adaptive technique are summarized and discussed. Some Pascal pseudocodes which show the way how such a technique can be implemented easily in microcomputers are also provided. Both the applicability and the accuracy of the method proposed here are illustrated through a numerical example.
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
This paper presents an experimental and systematic investigation about how geometric parameters on a biplane configuration have an influence on aerodynamic parameters. This experimental investigation has been developed in a two-dimensional approach. Theoretical studies about biplanes configurations have been developed in the past, but there is not enough information about experimental wind tunnel data at low Reynolds number. This two-dimensional study is a first step to further tridimensional investigations about the box wing configuration. The main objective of the study is to find the relationships between the geometrical parameters which present the best aerodynamic behavior: the highest lift, the lowest drag and the lowest slope of the pitching moment. A tridimensional wing-box model will be designed following the pattern of the two dimensional study conclusions. It will respond to the geometrical relationships that have been considered to show the better aerodynamic behavior. This box-wing model will be studied in the aim of comparing the advantages and disadvantages between this biplane configuration and the plane configuration, looking for implementing the box-wing in the UAV?s field. Although the box wing configuration has been used in a small number of existing UAV, prestigious researchers have found it as a field of high aerodynamic and structural potential.
Resumo:
Transverse galloping is a type of aeroelastic instability characterized by oscillations perpendicular to wind direction, large amplitude and low frequency, which appears in some elastic two-dimensional bluff bodies when they are subjected to an incident flow, provided that the flow velocity exceeds a threshold critical value. Understanding the galloping phenomenon of different cross-sectional geometries is important in a number of engineering applications: for energy harvesting applications the interest relies on strongly unstable configurations but in other cases the purpose is to avoid this type of aeroelastic phenomenon. In this paper the aim is to analyze the transverse galloping behavior of rhombic bodies to understand, on the one hand, the dependence of the instability with a geometrical parameter such as the relative thickness and, on the other hand, why this cross-section shape, that is generally unstable, shows a small range of relative thickness values where it is stable. Particularly, the non-galloping rhombus-shaped prism?s behavior is revised through wind tunnel experiments. The bodies are allowed to freely move perpendicularly to the incoming flow and the amplitude of movement and pressure distributions on the surfaces is measured.
Resumo:
One of the main concerns when conducting a dam test is the acute determination of the hydrograph for a specific flood event. The use of 2D direct rainfall hydraulic mathematical models on a finite elements mesh, combined with the efficiency of vector calculus that provides CUDA (Compute Unified Device Architecture) technology, enables nowadays the simulation of complex hydrological models without the need for terrain subbasin and transit splitting (as in HEC-HMS). Both the Spanish PNOA (National Plan of Aereal Orthophotography) Digital Terrain Model GRID with a 5 x 5 m accuracy and the CORINE GIS Land Cover (Coordination of INformation of the Environment) that allows assessment of the ground roughness, provide enough data to easily build these kind of models
Resumo:
The linearized solution for the two-dimensional flow over an inlet of general form has been derived, assuming incompressible potential flow. With this theory suction forces at sharp inlet lips can be estimated and ideal inlets can be designed.
Resumo:
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's of the new mesh remain constant and equal to the initial FE mesh. In order to find the mesh producing the minimum of the selected objective function the steepest descent gradient technique has been applied as optimization algorithm. However this efficient technique has the drawback that demands a large computation power. Extensive application of this methodology to different 2-D elasticity problems leads to the conclusion that isometric isostatic meshes (ii-meshes) produce better results than the standard reasonably initial regular meshes used in practice. This conclusion seems to be independent on the objective function used for comparison. These ii-meshes are obtained by placing FE nodes along the isostatic lines, i.e. curves tangent at each point to the principal direction lines of the elastic problem to be solved and they should be regularly spaced in order to build regular elements. That means ii-meshes are usually obtained by iteration, i.e. with the initial FE mesh the elastic analysis is carried out. By using the obtained results of this analysis the net of isostatic lines can be drawn and in a first trial an ii-mesh can be built. This first ii-mesh can be improved, if it necessary, by analyzing again the problem and generate after the FE analysis the new and improved ii-mesh. Typically, after two first tentative ii-meshes it is sufficient to produce good FE results from the elastic analysis. Several example of this procedure are presented.
Resumo:
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the α-helical content increases from 60–64% to 80–90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 Å2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled α-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
Resumo:
We report the results of x-ray reflectivity and grazing incidence x-ray diffraction studies of the liquid–vapor interface of a dilute alloy of Pb in Ga over the temperature range of 23–76°C. Our data show that the liquid–vapor interface of this alloy is stratified for several atomic diameters into the bulk liquid and that a monolayer of Pb forms the outermost stratum of the interface. Over the temperature range of 23–56°C, the monolayer of Pb is in an ordered hexagonal phase. At about 58°C, this monolayer undergoes a first-order transition to a hexatic phase, which remains stable to 76°C. An analogy between the observed transition and the first-order melting transition in a one-component classical plasma is suggested.
Resumo:
A question often posed in protein folding/unfolding studies is whether the process is fully cooperative or whether it contains sequential elements. To address this question, one needs tools capable of resolving different events. It seems that, at least in certain cases, two-dimensional (2D) IR correlation spectroscopy can provide answers to this question. To illustrate this point, we have turned to the Cro-V55C dimer of the λ Cro repressor, a protein known to undergo thermal unfolding in two discrete steps through a stable equilibrium intermediate. The secondary structure of this intermediate is compatible with that of a partially unfolded protein and involves a reorganization of the N terminus, whereas the antiparallel β-ribbon formed by the C-terminal part of each subunit remains largely intact. To establish whether the unfolding process involves sequential events, we have performed a 2D correlation analysis of IR spectra recorded over the temperature range of 20–95°C. The 2D IR correlation analysis indeed provides evidence for a sequential formation of the stable intermediate, which is created in three (closely related) steps. A first step entails the unfolding of the short N-terminal β-strand, followed by the unfolding of the α-helices in a second step, and the third step comprises the reorganization of the remaining β-sheet and of some unordered segments in the protein. The complete unfolding of the stable intermediate at higher temperatures also undergoes sequential events that ultimately end with the breaking of the H bonds between the two β-strands at the dimer interface.
Resumo:
The Ising problem consists in finding the analytical solution of the partition function of a lattice once the interaction geometry among its elements is specified. No general analytical solution is available for this problem, except for the one-dimensional case. Using site-specific thermodynamics, it is shown that the partition function for ligand binding to a two-dimensional lattice can be obtained from those of one-dimensional lattices with known solution. The complexity of the lattice is reduced recursively by application of a contact transformation that involves a relatively small number of steps. The transformation implemented in a computer code solves the partition function of the lattice by operating on the connectivity matrix of the graph associated with it. This provides a powerful new approach to the Ising problem, and enables a systematic analysis of two-dimensional lattices that model many biologically relevant phenomena. Application of this approach to finite two-dimensional lattices with positive cooperativity indicates that the binding capacity per site diverges as Na (N = number of sites in the lattice) and experiences a phase-transition-like discontinuity in the thermodynamic limit N → ∞. The zeroes of the partition function tend to distribute on a slightly distorted unit circle in complex plane and approach the positive real axis already for a 5×5 square lattice. When the lattice has negative cooperativity, its properties mimic those of a system composed of two classes of independent sites with the apparent population of low-affinity binding sites increasing with the size of the lattice, thereby accounting for a phenomenon encountered in many ligand-receptor interactions.
Resumo:
An exact treatment of adsorption from a one-dimensional lattice gas is used to eliminate and correct a well-known inconsistency in the Brunauer–Emmett–Teller (B.E.T.) equation—namely, Gibbs excess adsorption is not taken into account and the Gibbs integral diverges at the transition point. However, neither model should be considered realistic for experimental adsorption systems.
Resumo:
The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.