976 resultados para transitive calibration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple and rapid HPLC, GC, and TLC procedures have been developed for detection and determination of nimesulide, a non-pharmacopeial drug, in preformulation and dosage form. Use of these techniques has enabled separation of impurities and the precursor in the bulk material and in formulations. Isocratic reversed-phase HPLC was performed on a C-18 column with methanol-water-acetic acid, 67:32:1 (v/v), as mobile phase and UV detection at 230 nm. Calibration curves were linear over the concentration range 100-1000 mug mL(-1) with a good correlation coefficient (0.9993) and a coefficient of variation of 1.5%. Gas chromatography was performed on an OV-17 packed column with temperature programming and flame-ionization detection. The lower limit of determination by HPLC and GC was 4 ppm. Thin-layer chromatography of nimesulide was performed on silica gel G with toluene-ethyl acetate, 8:2, as mobile phase. Stability testing of the drug was performed under different temperature, humidity, and UV-radiation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-situ transmission electron microscopy (TEM) has developed rapidly over the last decade. In particular, with the inclusion of scanning probes in TEM holders, allows both mechanical and electrical testing to be performed whilst simultaneously imaging the microstructure at high resolution. In-situ TEM nanoindentation and tensile experiments require only an axial displacement perpendicular to the test surface. However, here, through the development of a novel in-situ TEM triboprobe, other surface characterisation experiments are now possible, with the introduction of a fully programmable 3D positioning system. Programmable lateral displacement control allows scratch tests to be performed at high resolution with simultaneous imaging of the changing microstructure. With the addition of repeated cyclic movements, both nanoscale fatigue and friction experiments can also now be performed. We demonstrate a range of movement profiles for a variety of applications, in particular, lateral sliding wear. The developed NanoLAB TEM triboprobe also includes a new closed loop vision control system for intuitive control during positioning and alignment. It includes an automated online calibration to ensure that the fine piezotube is controlled accurately throughout any type of test. Both the 3D programmability and the closed loop vision feedback system are demonstrated here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with haptic realism related to Kinematic capabilities of the devices used in manipulation of virtual objects in virtual assembly environments and its effect on achieving haptic realism. Haptic realism implies realistic touch sensation. In virtual world all the operations are to be performed in the same way and with same level of accuracy as in the real world .In order to achieve realism there should be a complete mapping of real and virtual world dimensions. Experiments are conducted to know the kinematic capabilities of the device by comparing the dimensions of the object in the real and virtual world. Registered dimensions in the virtual world are found to be approximately 1.5 times that of the real world. Dimensional variations observed were discrepancy due to exoskeleton and discrepancy due to real and virtual hands. Experiments are conducted to know the discrepancy due to exoskeleton and this discrepancy can be taken care of by either at the hardware or software level. A Mathematical model is proposed to know the discrepancy between real and virtual hands. This could not give a fixed value and can not be taken care of by calibration. Experiments are conducted to figure out how much compensation can be given to achieve haptic realism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simpler circuits for frequency-sensitive relays responding to change and rate of change of system frequency have been developed employing phase-locked loops. A new relay responding to time intergral of the fall in system frequency has also been developed and its performance has been compared with those responding to change and rate of change of system frequency. The relays have been tested and calibrated with the help of a specially designed calibration kit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel amphiphilic poly(meta-phenylene)s were prepared by an oxidative coupling approach. These polymers were synthesized to shed light on their solution properties with special emphasis on aggregation and folding behavior. The polymers were characterized by NMR spectroscopy and molecular weights were determined by Gel Permeation Chromatography using Universal calibration. Literature studies revealed that the backbone of these PMPs can be helical moreover, the light emitting properties of this conjugated polymer can be used as a handle to study the possible aggregation or self-assembling behavior. In this report we show the synthesis, characterization and preliminary aggregation properties that points out that one of the synthesized PMP behave as a polysoap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a(1), b(1)] x [a(2), b(2)] x ... x [a(k), b(k)]. The boxicity of G, box(G), is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes; i.e., each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset, where S is the ground set and P is a reflexive, antisymmetric and transitive binary relation on S. The dimension of P, dim(P), is the minimum integer t such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P; i.e., S is the vertex set and two vertices are adjacent if and only if they are comparable in P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. It immediately follows that if P is a height-2 poset, then box(G(P)) <= dim(P) <= 2box(G(P)) since the underlying comparability graph of a height-2 poset is a bipartite graph. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with the extended double cover of G, denoted as G(c): Note that G(c) is a bipartite graph with partite sets A and B which are copies of V (G) such that, corresponding to every u is an element of V (G), there are two vertices u(A) is an element of A and u(B) is an element of B and {u(A), v(B)} is an edge in G(c) if and only if either u = v or u is adjacent to v in G. Let P(c) be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P(c)) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) = 2 tree width (G(P)) + 4, since boxicity of any graph is known to be at most its tree width + 2. In the other direction, using the already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta), which is an improvement over the best-known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-is an element of)) for any is an element of > 0 unless NP = ZPP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An all-digital technique is proposed for generating an accurate delay irrespective of the inaccuracies of a controllable delay line. A subsampling technique-based delay measurement unit (DMU) capable of measuring delays accurately for the full period range is used as the feedback element to build accurate fractional period delays based on input digital control bits. The proposed delay generation system periodically measures and corrects the error and maintains it at the minimum value without requiring any special calibration phase. Up to 40x improvement in accuracy is demonstrated for a commercial programmable delay generator chip. The time-precision trade-off feature of the DMU is utilized to reduce the locking time. Loop dynamics are adjusted to stabilize the delay after the minimum error is achieved, thus avoiding additional jitter. Measurement results from a high-end oscilloscope also validate the effectiveness of the proposed system in improving accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief discussion and review of the geothermal reservoir systems, geothermal energy and modeling and simulation of the geothermal reservoirs has been presented here. Different types of geothermal reservoirs and their governing equations have been discussed first. The conceptual and numerical modeling along with the representation of flow though fractured media, some issues related to non isothermal flow through fractured media, the efficiency of the geothermal reservoir, structure of the numerical models, boundary conditions and calibration procedures have been illustrated. A brief picture of the Indian scenario and some barriers related with geothermal power are discussed and presented thereafter. Finally some gaps of the existing knowledge and recent focuses of research are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The financial crisis set off by the default of Lehman Brothers in 2008 leading to disastrous consequences for the global economy has focused attention on regulation and pricing issues related to credit derivatives. Credit risk refers to the potential losses that can arise due to the changes in the credit quality of financial instruments. These changes could be due to changes in the ratings, market price (spread) or default on contractual obligations. Credit derivatives are financial instruments designed to mitigate the adverse impact that may arise due to credit risks. However, they also allow the investors to take up purely speculative positions. In this article we provide a succinct introduction to the notions of credit risk, the credit derivatives market and describe some of the important credit derivative products. There are two approaches to pricing credit derivatives, namely the structural and the reduced form or intensity-based models. A crucial aspect of the modelling that we touch upon briefly in this article is the problem of calibration of these models. We hope to convey through this article the challenges that are inherent in credit risk modelling, the elegant mathematics and concepts that underlie some of the models and the importance of understanding the limitations of the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology for measurement of planar liquid volume fraction in dense sprays using a combination of Planar Laser-Induced Fluorescence (PLIF) and Particle/Droplet Imaging Analysis (PDIA) is presented in this work. The PLIF images are corrected for loss of signal intensity due to laser sheet scattering, absorption and auto-absorption. The key aspect of this work pertains to simultaneously solving the equations involving the corrected PLIF signal and liquid volume fraction. From this, a quantitative estimate of the planar liquid volume fraction is obtained. The corrected PLIF signal and the corrected planar Mie scattering can be also used together to obtain the Sauter Mean Diameter (SMD) distribution by using data from the PDIA technique at a particular location for calibration. This methodology is applied to non-evaporating sprays of diesel and a more viscous pure plant oil at an injection pressure of 1000 bar and a gas pressure of 30 bar in a high pressure chamber. These two fuels are selected since their viscosity values are very different with a consequently very different spray structure. The spatial distribution of liquid volume fraction and SMD is obtained for two fuels. The proposed method is validated by comparing liquid volume fraction obtained by the current method with data from PDIA technique. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.