980 resultados para trait inferences


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution investigates the evolution of diet in the Pan – Homo and hominin clades. It does this by focusing on 12 variables (nine dental and three mandibular) for which data are available about extant chimpanzees, modern humans and most extinct hominins. Previous analyses of this type have approached the interpretation of dental and gnathic function by focusing on the identification of the food consumed (i.e. fruits, leaves, etc.) rather than on the physical properties (i.e. hardness, toughness, etc.) of those foods, and they have not specifically addressed the role that the physical properties of foods play in determining dental adaptations. We take the available evidence for the 12 variables, and set out what the expression of each of those variables is in extant chimpanzees, the earliest hominins, archaic hominins, megadont archaic hominins, and an inclusive grouping made up of transitional hominins and pre-modern Homo . We then present hypotheses about what the states of these variables would be in the last common ancestor of the Pan – Homo clade and in the stem hominin. We review the physical properties of food and suggest how these physical properties can be used to investigate the functional morphology of the dentition. We show what aspects of anterior tooth morphology are critical for food preparation (e.g. peeling fruit) prior to its ingestion, which features of the postcanine dentition (e.g. overall and relative size of the crowns) are related to the reduction in the particle size of food, and how information about the macrostructure (e.g. enamel thickness) and microstructure (e.g. extent and location of enamel prism decussation) of the enamel cap might be used to make predictions about the types of foods consumed by extinct hominins. Specifically, we show how thick enamel can protect against the generation and propagation of cracks in the enamel that begin at the enamel– dentine junction and move towards the outer enamel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The etiology of complex diseases is heterogeneous. The presence of risk alleles in one or more genetic loci affects the function of a variety of intermediate biological pathways, resulting in the overt expression of disease. Hence, there is an increasing focus on identifying the genetic basis of disease by sytematically studying phenotypic traits pertaining to the underlying biological functions. In this paper we focus on identifying genetic loci linked to quantitative phenotypic traits in experimental crosses. Such genetic mapping methods often use a one stage design by genotyping all the markers of interest on the available subjects. A genome scan based on single locus or multi-locus models is used to identify the putative loci. Since the number of quantitative trait loci (QTLs) is very likely to be small relative to the number of markers genotyped, a one-stage selective genotyping approach is commonly used to reduce the genotyping burden, whereby markers are genotyped solely on individuals with extreme trait values. This approach is powerful in the presence of a single quantitative trait locus (QTL) but may result in substantial loss of information in the presence of multiple QTLs. Here we investigate the efficiency of sequential two stage designs to identify QTLs in experimental populations. Our investigations for backcross and F2 crosses suggest that genotyping all the markers on 60% of the subjects in Stage 1 and genotyping the chromosomes significant at 20% level using additional subjects in Stage 2 and testing using all the subjects provides an efficient approach to identify the QTLs and utilizes only 70% of the genotyping burden relative to a one stage design, regardless of the heritability and genotyping density. Complex traits are a consequence of multiple QTLs conferring main effects as well as epistatic interactions. We propose a two-stage analytic approach where a single-locus genome scan is conducted in Stage 1 to identify promising chromosomes, and interactions are examined using the loci on these chromosomes in Stage 2. We examine settings under which the two-stage analytic approach provides sufficient power to detect the putative QTLs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: It is well known that there are specific peripheral activation patterns associated with the emotional valence of sounds. However, it is unclear how these effects adapt over time. The personality traits influencing these processes are also not clear. Anxiety disorders influence the autonomic activation related to emotional processing. However, personality anxiety traits have never been studied in the context of affective auditory stimuli. METHODS: Heart rate, skin conductance, zygomatic muscle activity and subjective rating of emotional valence and arousal were recorded in healthy subjects during the presentation of pleasant, unpleasant, and neutral sounds. Recordings were repeated 1 week later to examine possible time-dependent changes related to habituation and sensitization processes. RESULTS AND CONCLUSION: There was not a generalized habituation or sensitization process related to the repeated presentation of affective sounds, but rather, specific adaptation processes for each physiological measure. These observations are consistent with previous studies performed with affective pictures and simple tones. Thus, the measures of skin conductance activity showed the strongest changes over time, including habituation during the first presentation session and sensitization at the end of the second presentation session, whereas the facial electromyographic activity habituated only for the neutral stimuli and the heart rate did not habituate at all. Finally, we showed that the measure of personality trait anxiety influenced the orienting reaction to affective sounds, but not the adaptation processes related to the repeated presentation of these sounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks have been an active research area in the past decade due to the variety of their applications. Many research studies have been conducted to solve the problems underlying the middleware services of sensor networks, such as self-deployment, self-localization, and synchronization. With the provided middleware services, sensor networks have grown into a mature technology to be used as a detection and surveillance paradigm for many real-world applications. The individual sensors are small in size. Thus, they can be deployed in areas with limited space to make unobstructed measurements in locations where the traditional centralized systems would have trouble to reach. However, there are a few physical limitations to sensor networks, which can prevent sensors from performing at their maximum potential. Individual sensors have limited power supply, the wireless band can get very cluttered when multiple sensors try to transmit at the same time. Furthermore, the individual sensors have limited communication range, so the network may not have a 1-hop communication topology and routing can be a problem in many cases. Carefully designed algorithms can alleviate the physical limitations of sensor networks, and allow them to be utilized to their full potential. Graphical models are an intuitive choice for designing sensor network algorithms. This thesis focuses on a classic application in sensor networks, detecting and tracking of targets. It develops feasible inference techniques for sensor networks using statistical graphical model inference, binary sensor detection, events isolation and dynamic clustering. The main strategy is to use only binary data for rough global inferences, and then dynamically form small scale clusters around the target for detailed computations. This framework is then extended to network topology manipulation, so that the framework developed can be applied to tracking in different network topology settings. Finally the system was tested in both simulation and real-world environments. The simulations were performed on various network topologies, from regularly distributed networks to randomly distributed networks. The results show that the algorithm performs well in randomly distributed networks, and hence requires minimum deployment effort. The experiments were carried out in both corridor and open space settings. A in-home falling detection system was simulated with real-world settings, it was setup with 30 bumblebee radars and 30 ultrasonic sensors driven by TI EZ430-RF2500 boards scanning a typical 800 sqft apartment. Bumblebee radars are calibrated to detect the falling of human body, and the two-tier tracking algorithm is used on the ultrasonic sensors to track the location of the elderly people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.