885 resultados para toxic metal
Resumo:
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (LR), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.
Resumo:
Growing ivy around buildings has benefits. However, ivy potentially damages buildings which limit its use. Options for preventing ivy attachment were investigated to provide ivy management alternatives. Indoor and outdoor experiments were conducted, where metals (Cu, Zn) and anti-graffiti paints were applied to model wall panels. Metal treatments, in both indoor and outdoor experiments, fully prevented ivy attachment. For Hedera helix, silane-based anti-graffiti paint prevented attachment in the laboratory and required under half the peak detachment force necessary to detach the control in the outdoor experiment. In conclusion, metals and silane-based paint are management possibilities for ivy attachment around buildings.
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.
Resumo:
The study of old open clusters outside the solar circle can bring constraints on formation scenarios of the outer disc. In particular, accretion of dwarf galaxies has been proposed as a likely mechanism in the area. We use BVI photometry for determining fundamental parameters of the faint open cluster ESO 92-SC05. Colour-magnitude diagrams are compared with Padova isochrones, in order to derive age, reddening and distance. We derive a reddening E(B - V) = 0.17, and an old age of similar to 6.0 Gyr. It is one of the rare open clusters known to be older than 5 Gyr. A metallicity of Z similar to 0.004 or [M/H] similar to -0.7 is found. The rather low metallicity suggests that this cluster might be the result of an accretion episode of a dwarf galaxy.
Resumo:
We present preliminary results for the estimation of barium [Ba/Fe], and strontium [Sr/Fe], abundances ratios using medium-resolution spectra (1-2 angstrom). We established a calibration between the abundance ratios and line indices for Ba and Sr, using multiple regression and artificial neural network techniques. A comparison between the two techniques (showing the advantage of the latter), as well as a discussion of future work, is presented.
Resumo:
Introduction: Very little is known of the diversity and expression of virulence factors of serotypes of Aggregatibacter actinomycetemcomitans. Toxic activity on Chinese hamster ovary (CHO) cells and cdt and ltx genotyping were evaluated in A. actinomycetemcomitans serotypes. Methods: Forty-one A. actinomycetemcomitans isolates were analysed for CHO cell growth inhibition. Genotyping was performed by polymerase chain reactions specific to the ltx promoter region, serotype-specific and cdt region and by sequencing of cdtB. Results: cdtABC was detected in 40 strains. Analysis of the cdtA upstream region revealed 10 cdt genotypes. Toxicity to CHO cells was detected for 92.7% of the isolates; however, no correlation between the toxic activity and the cdt genotype was detected. Serotype c was more prevalent among Brazilian samples (68.0%). Four serotype b isolates from subjects with aggressive periodontitis were associated with high leukotoxin production and exhibited moderate to strong toxic activity in CHO cells, but were classified in different cdt genotypes. High levels of toxicity in CHO cells were not associated with a particular serotype; 57.1% of serotype a isolates presented low toxicity to CHO cells whereas the highly toxic strains belonged to serotypes b and c. Sequencing of cdtB revealed a single nucleotide polymorphism of amino acid 281 but this was not related to the toxic activity in CHO cells. Conclusion: Differences in prevalence of the low and highly cytotoxic strains among serotypes reinforce the hypothesis that serotype b and c isolates of A. actinomycetemcomitans are more virulent than serotype a strains.
Resumo:
In this study, Cu(II) complexes with fluorinated ligands were produced aiming at the development of new, less toxic antileishmanial metallodrugs. Complexes of the general formula CuL(2) (L = lactate, trifluorolactate, 2-hydroxyisobutyrate, trifluoro-2-hydroxyisobutyrate) were synthesized in methanolic medium, purified by crystallization and characterized by elemental analysis and electronic and infrared spectroscopies. In vitro experiments with Leishmania amazonensis promastigotes showed that the trifluorolactate derivative more active than its non-fluorinated counterpart. Our results indicate that fluorinated chelators may be interesting to increase metal toxicity and/or open new paths for metallodrug chemotherapy against leishmaniasis.
Resumo:
We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.