841 resultados para topical cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. Weestimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-10506 degrees C to 6006 degrees C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When components of a propulsion system are exposed to elevated flow temperatures there is a risk for catastrophic failure if the components are not properly protected from the thermal loads. Among several strategies, slot film cooling is one of the most commonly used, yet poorly understood active cooling techniques. Tangential injection of a relatively cool fluid layer protects the surface(s) in question, but the turbulent mixing between the hot mainstream and cooler film along with the presence of the wall presents an inherently complex problem where kinematics, thermal transport and multimodal heat transfer are coupled. Furthermore, new propulsion designs rely heavily on CFD analysis to verify their viability. These CFD models require validation of their results, and the current literature does not provide a comprehensive data set for film cooling that meets all the demands for proper validation, namely a comprehensive (kinematic, thermal and boundary condition data) data set obtained over a wide range of conditions. This body of work aims at solving the fundamental issue of validation by providing high quality comprehensive film cooling data (kinematics, thermal mixing, heat transfer). 3 distinct velocity ratios (VR=uc/u∞) are examined corresponding to wall-wake (VR~0.5), min-shear (VR ~ 1.0), and wall-jet (VR~2.0) type flows at injection, while the temperature ratio TR= T∞/Tc is approximately 1.5 for all cases. Turbulence intensities at injection are 2-4% for the mainstream (urms/u∞, vrms/u∞,), and on the order of 8-10% for the coolant (urms/uc, vrms/uc,). A special emphasis is placed on inlet characterization, since inlet data in the literature is often incomplete or is of relatively low quality for CFD development. The data reveals that min-shear injection provides the best performance, followed by the wall-jet. The wall-wake case is comparably poor in performance. The comprehensive data suggests that this relative performance is due to the mixing strength of each case, as well as the location of regions of strong mixing with respect to the wall. Kinematic and thermal data show that strong mixing occurs in the wall-jet away from the wall (y/s>1), while strong mixing in the wall-wake occurs much closer to the wall (y/s<1). Min-shear cases exhibit noticeably weaker mixing confined to about y/s=1. Additionally to these general observations, the experimental data obtained in this work is analyzed to reveal scaling laws for the inlets, near-wall scaling, detecting and characterizing coherent structures in the flow as well as to provide data reduction strategies for comparison to CFD models (RANS and LES).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was pulled off the substrate holder down into special reservoir filled with oil held at ambient temperature. The properties of the AISI 1010 steel samples were characterized by optical and electron microscopy, X-ray diffraction, Mössbauer spectroscopy and microhardness tests. Thermal gradient inside the sample kept on substrate holder during cooling process was measured by three inserted thermocouples at different depths. When samples were cooled rapidly the transformation of ϵ-Fe 2 − 3 N to γ′-Fe 4 N was inhibited. Such effect is indicated by the high concentration of ϵ-Fe compound zone. To get solid state solution of nitrogen in the diffusion zone, instead of precipitates of nitride phases, the cooling rate should be higher than a critical value of about 0.95 °C/s. When this value is reached at any depth of the diffusion zone, two distinct diffusion zones will appear. Temperature gradients were measured inside the samples as a consequence of the plasma treatment. It's suggested the need for standardization of the term “treatment temperature” for plasma treatment because different nitrided layer properties could be reported for the same “treatment temperature”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper cooling temperatures will prevent microbial growth by helping limit the time that food is exposed to the temperature danger zone. After cooking or heating, Time/Temperature for Safety (TCS) foods must be cooled quickly: From 130°F to 70°F within 2 hours, and From 70°F to 45°F within 4 hours. This sheet also contains a rapid cooling temperature log template.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thermal, exergetic analysis and performance evaluation of seawater and fresh wet cooling tower and the effect of parameters on its performance is investigated. With using of energy and mass balance equations, experimental results, a mathematical model and EES code developed. Due to lack of fresh water, seawater cooling is interesting choice for future of cooling, so the effect of seawater in the range of 1gr/kg to 60gr/kg for salinity on the performance characteristics like air efficiency, water efficiency, output water temperature of cooling tower, flow of the exergy, and the exergy efficiency with comparison with fresh water examined. Decreasing of air efficiency about 3%, increasing of water efficiency about 1.5% are some of these effects. Moreover with formation of fouling the performance of cooling tower decreased about 15% which this phenomena and its effects like increase in output water temperature and tower excess volume has been showed and also accommodate with others work. Also optimization for minimizing cost, maximizing air efficiency, and minimizing exergy destruction has been done, results showed that optimization on minimizing the exergy destruction has been satisfy both minimization of the cost and the maximization of the air efficiency, although it will not necessarily permanent for all inputs and optimizations. Validation of this work is done by comparing computational results and experimental data which showed that the model have a good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine whether a three day burst of a potent corticosteroid is more effective than a mild preparation used for seven days in children with mild or moderate atopic eczema. Design Randomised, double blind, parallel group study of 18 weeks' duration. Setting 13 general practices and a teaching hospital in the Nottingham area. Participants 174 children with mild or moderate atopic eczema recruited from general practices and 33 from a hospital outpatient clinic. Interventions 0.1% betamethasone valerate applied for three days followed by the base ointment for four days versus 1% hydrocortisone applied for seven days. Main outcome measures Primary outcomes were total number of scratch­free days and number of relapses. Secondary outcomes were median duration of relapses, number of undisturbed nights, disease severity (six area, six sign atopic dermatitis severity scale), scores on two quality of life measures (children's life quality index and dermatitis family impact questionnaire), and number of patients in whom treatment failed in each arm. Results No differences were found between the two groups. This was consistent for all outcomes. The median number of scratch­free days was 118.0 for the mild group and 117.5 for the potent group (difference 0.5, 95% confidence interval - 2.0 to 4.0, P = 0.53). The median number of relapses for both groups was 1.0. Both groups showed clinically important improvements in disease severity and quality of life compared with baseline. Conclusion A short burst of a potent topical corticosteroid is just as effective as prolonged use of a milder preparation for controlling mild or moderate atopic eczema in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational methodology for designing ionic liquids (ILs) with an enhanced water absorption capacity to be used in absorption-refrigeration systems is presented here. It is based on increasing the hydrogen bond (HB)-acceptor ability of the anion and combining it with a cation that presents a weak cation-anion interaction. Employing this strategy, we identified and prepared three novel dianionic ILs with an enhanced water absorption capacity, larger than LiBr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the author’s version of a work that was accepted for publication in Nanoscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess Pharmacists’ Perceptions and Experiences of Topical Antibacterial Drug Dispensing in Community Pharmacy Setting in Kedah State, Malaysia in order to minimize drug resistance issues. Methods: A cross-sectional study involving a pre-validated questionnaire was conducted in community pharmacies within Kedah State, Malaysia. Descriptive statistics and Spearman’s correlation coefficient were used for data analysis. The collected were analysed using statistical package for social sciences (SPSS) version 18.0. Results: The result shows that, 53.4 % of CPs in Kedah State perceived that topical antibacterial is not necessary for every topical bacterial infection. Fusidic acid was the most frequently dispensed topical antibacterial drug while superficial wound was reported to be the most frequently encountered topical bacterial infection. CPs (12.60 %) encountered antibacterial resistance cases but none reported them. The drug that had resistance issue was neomycin. Conclusion: CPs in Kedah State, Malaysia generally have the right perceptions on the dispensing of topical antibacterial drugs. However, their knowledge on the rational use of topical antibacterial drugs and vigilance on antibacterial resistance issue need improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When underground mines close they often fill with water from ground and surface sources; each mine can contain millions to billions of gallons of water. This water, heated by the Earth’s geothermal energy, reaches temperatures ideal for heat pumps. The sheer scale of these flooded underground mines presents a unique opportunity for large scale geothermal heat pump setups which would not be as economically, socially, and environmentally feasible anywhere else. A literature search revealed approximately 30 instances of flooded underground mines being used to heat and cool buildings worldwide. With thousands of closed/abandoned underground mines in the U.S. and a million estimated globally, why hasn’t this opportunity been more widely adopted? This project has found perception and lack of knowledge about the feasibility to be key barriers. To address these issues, this project drafted a guidebook for former mining communities titled A Community Guide to Mine Water Geothermal Heating and Cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clinical documents, medical terms are often expressed in multi-word phrases. Traditional topic modelling approaches relying on the “bag-of-words” assumption are not effective in extracting topic themes from clinical documents. This paper proposes to first extract medical phrases using an off-the-shelf tool for medical concept mention extraction, and then train a topic model which takes a hierarchy of Pitman-Yor processes as prior for modelling the generation of phrases of arbitrary length. Experimental results on patients’ discharge summaries show that the proposed approach outperforms the state-of-the-art topical phrase extraction model on both perplexity and topic coherence measure and finds more interpretable topics.