843 resultados para tomografia variazione totale norma L1 minimo alternato


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Read through a focus on the remediation of personal photography in the Flickr photosharing website, in this essay I treat vernacular creativity as a field of cultural practice; one that that does not operate inside the institutions or cultural value systems of high culture or the commercial popular media, and yet draws on and is periodically appropriated by these other systems in dynamic and productive ways. Because of its porosity to commercial culture and art practice, this conceptual model of ‘vernacular creativity’ implies a historicised account of ‘ordinary’ or everyday creative practice that accounts for both continuity and change and avoids creating a nostalgic desire for the recuperation of an authentic folk culture. Moving beyond individual creative practice, the essay concludes by considering the unintended consequences of vernacular creativity practiced in online social networks: in particular, the idea of cultural citizenship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined properties of culture-level personality traits in ratings of targets (N=5,109) ages 12 to 17 in 24 cultures. Aggregate scores were generalizable across gender, age, and relationship groups and showed convergence with culture-level scores from previous studies of self-reports and observer ratings of adults, but they were unrelated to national character stereotypes. Trait profiles also showed cross-study agreement within most cultures, 8 of which had not previously been studied. Multidimensional scaling showed that Western and non-Western cultures clustered along a dimension related to Extraversion. A culture-level factor analysis replicated earlier findings of a broad Extraversion factor but generally resembled the factor structure found in individuals. Continued analysis of aggregate personality scores is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two decades after its inception, Latent Semantic Analysis(LSA) has become part and parcel of every modern introduction to Information Retrieval. For any tool that matures so quickly, it is important to check its lore and limitations, or else stagnation will set in. We focus here on the three main aspects of LSA that are well accepted, and the gist of which can be summarized as follows: (1) that LSA recovers latent semantic factors underlying the document space, (2) that such can be accomplished through lossy compression of the document space by eliminating lexical noise, and (3) that the latter can best be achieved by Singular Value Decomposition. For each aspect we performed experiments analogous to those reported in the LSA literature and compared the evidence brought to bear in each case. On the negative side, we show that the above claims about LSA are much more limited than commonly believed. Even a simple example may show that LSA does not recover the optimal semantic factors as intended in the pedagogical example used in many LSA publications. Additionally, and remarkably deviating from LSA lore, LSA does not scale up well: the larger the document space, the more unlikely that LSA recovers an optimal set of semantic factors. On the positive side, we describe new algorithms to replace LSA (and more recent alternatives as pLSA, LDA, and kernel methods) by trading its l2 space for an l1 space, thereby guaranteeing an optimal set of semantic factors. These algorithms seem to salvage the spirit of LSA as we think it was initially conceived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. A sheep study designed to compare the accuracy of static radiographs, dynamic radiographs, and computed tomographic (CT) scans for the assessment of thoracolumbar facet joint fusion as determined by micro-CT scanning. Objective. To determine the accuracy and reliability of conventional imaging techniques in identifying the status of thoracolumbar (T13-L1) facet joint fusion in a sheep model. Summary of Background Data. Plain radiographs are commonly used to determine the integrity of surgical arthrodesis of the thoracolumbar spine. Many previous studies of fusion success have relied solely on postoperative assessment of plain radiographs, a technique lacking sensitivity for pseudarthrosis. CT may be a more reliable technique, but is less well characterized. Methods. Eleven adult sheep were randomized to either attempted arthrodesis using autogenous bone graft and internal fixation (n = 3) or intentional pseudarthrosis (IP) using oxidized cellulose and internal fixation (n = 8). After 6 months, facet joint fusion was assessed by independent observers, using (1) plain static radiography alone, (2) additional dynamic radiographs, and (3) additional reconstructed spiral CT imaging. These assessments were correlated with high-resolution micro-CT imaging to predict the utility of the conventional imaging techniques in the estimation of fusion success. Results. The capacity of plain radiography alone to correctly predict fusion or pseudarthrosis was 43% and was not improved using plain radiography and dynamic radiography with also a 43% accuracy. Adding assessment by reformatted CT imaging to the plain radiography techniques increased the capacity to predict fusion outcome to 86% correctly. The sensitivity, specificity, and accuracy of static radiography were 0.33, 0.55, and 0.43, respectively, those of dynamic radiography were 0.46, 0.40, and 0.43, respectively, and those of radiography plus CT were 0.88, 0.85, and 0.86, respectively. Conclusion. CT-based evaluation correlated most closely with high-resolution micro-CT imaging. Neither plain static nor dynamic radiographs were able to predict fusion outcome accurately. © 2012 Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids-12-72 molecules per 360 copies of L1-limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As cervical cancer is causally associated with 14 high-risk types of human papillomavirus (HPV), a successful HPV vaccine will have a major impact on this disease. Although some persistent HPV infections progress to cervical cancer, host immunity is generally able to clear most HPV infections. Both cell-mediated and antibody responses have been implicated in influencing the susceptibility, persistence or clearance of genital HPV infection. There have been two clinical trials that show that vaccines based on virus-like particles (VLPs) made from the major capsid protein, L1, are able to type specifically protect against cervical intra-epithelial neoplasia and infection. However, there is no evidence that even a mixed VLP vaccine will protect against types not included in the vaccine, and a major challenge that remains is how to engineer protection across a broader spectrum of viruses. Strategies for production of HPV vaccines using different vaccine vectors and different production systems are also reviewed. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant human papillomavirus (HPV) virus-like particles (VLPs) made from the major capsid protein L1 are promising vaccine candidates for use as vaccines against genital and other HPV infections, and particularly against HPV-16. However, HPV-16 genotype variants have different binding affinities for neutralising mouse Mabs raised against HPV-16 L1 VLPs. This paper analyses, using a panel of well-characterised Mabs, the effects on the antigenicity of various C- and N-terminal deletants of HPV-16 L1 made in insect cells via recombinant baculovirus, of an A → T mutation at residue 266 (A266T), and of a C → G mutation at conserved position 428 (C428G). The effects of these changes on assembly of the variant L1s were studied by electron microscopy. Binding of Mab H16:E70 to A266T was reduced by almost half in comparison to wild type L1. Retention of the C-terminal region 428-483 was critical for the binding of conformation-specific Mabs (H16:V5, H16:E70, H16:U4 and H16:9A) whereas deletion of the nuclear localisation signal (NLS) or the C428G mutation or an N-terminal deletion (residues 2-9) did not affect the antigenicity. The N-terminal deletion resulted in a mixed population of 30 and 55 nm VLPs, which differs from the same construct expressed in Escherichia coli, whereas pentamer aggregates resulted from deletion of the 428-465 region or the C428G mutation. The results have implications both for considering use of single-genotype HPV vaccines, and for design of novel second-generation vaccines. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses are the etiological agents of cervical cancer, one of the two most prevalent cancers in women in developing countries. Currently available prophylactic vaccines are based on the L1 major capsid protein, which forms virus-like particles when expressed in yeast and insect cell lines. Despite their recognized efficacy, there are significant shortcomings: the vaccines are expensive, include only two oncogenic virus types, are delivered via intramuscular injection and require a cold chain. Plant expression systems may provide ways of overcoming some of these problems, in particular the expense. In this article, we report recent promising advances in the production of prophylactic and therapeutic vaccines against human papillomavirus by expression of the relevant antigens in plants, and discuss future prospects for the use of such vaccines. © 2010 Expert Reviews Ltd.