960 resultados para tobacco BY-2 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing use of herbal medicines worldwide, and the extracts from the root of Salvia miltiorrhiza are widely used in the treatment of angina and stroke. In this study, we investigated the mechanism for the intestinal absorption of tanshinone IIB (TSB), a major constituent of S. miltiorrhiza. The oral bioavailability of TSB was about 3% in rats with less proportional increase in its maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) with increasing dosage. The time to Cmax (Tmax) was prolonged at higher oral dosage. In a single pass rat intestinal perfusion model, the permeability coefficients (Papp) based on TSB disappearance from the lumen (Plumen) were 6.2- to 7.2-fold higher (p < 0.01) than those based on drug appearance in mesenteric venous blood (Pblood). The uptake and efflux of TSB in Caco-2 cells were also significantly altered in the presence of an inhibitor for P-glycoprotein (PgP) or for multi-drug resistance associated protein (MRP1/2). TSB transport from the apical (AP) to basolateral (BL) side in Caco-2 monolayers was 3.3- to 5.7-fold lower than that from BL to AP side, but this polarized transport was attenuated by co-incubation of PgP or MRP1/2 inhibitors. The Papp values of TSB in the BL-AP direction were significantly higher in MDCKII cells over-expressing MDR1 or MRP1, but not in cells over-expressing MRP2-5, as compared with the wild-type cells. The plasma AUC0-24hr in mdr1a and mrp1 gene-deficient mice was 10.2- to 1.7-fold higher than that in the wild-type mice. Furthermore, TSB significantly inhibited the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1. TSB also moderately stimulated PgP ATPase activity. Taken collectively, our findings indicate that TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three pairs of parental (ρ+) and established mitochondrial DNA depleted (ρ0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the ρ0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone ρ0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle ρ0 cell lines but not in lung ρ0 cells. GSH peroxidase activity was four times higher in all three ρ0 cell lines in comparison to the parental ρ+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived ρ0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other ρ+ and ρ0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone ρ0 cells originate from sources other than mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antiproliferative and anti-inflammatory properties of conjugated linoleic acid (CLA) make it a potentially novel treatment in chronic inflammatory muscle wasting disease, particularly cancer cachexia. Human primary muscle cells were grown in coculture with MIA PaCa-2 pancreatic tumor cells and exposed to varying concentrations of c9,t11 and t10,c12 CLA. Expression of myogenic (Myf5, MyoD, myogenin, and myostatin) and inflammatory genes (CCL-2, COX-2, IL-8, and TNF-) were measured by real-time PCR. The t10,c12 CLA isomer, but not the c9,t11 isomer, significantly decreased MIA PaCa-2 proliferation by between 15% and 19%. There was a marked decrease in muscle MyoD and myogenin expression (78% and 62%, respectively), but no change in either Myf5 or myostatin, in myotubes grown in coculture with MIA PaCa-2 cells. CLA had limited influence on these responses. A similar pattern of myogenic gene expression changes was observed in myotubes treated with TNF- alone. Several-fold significant increases in CCL-2, COX-2, IL-8, and TNF- expression in myotubes were observed with MIA PaCa-2 coculture. The c9,t11 CLA isomer significantly decreased basal expression of TNF- in myotubes and could ameliorate its tumor-induced rise. The study provides insight into the anti-inflammatory and antiproliferative actions of CLA and its application as a therapeutic agent in inflammatory disease states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

8-Cyclopentyl-3-(3-(4-fluorosulfonylbenzoyl)oxy)propyl-propylxanthine (44, FSCPX) has been reported to exhibit potent and selective irreversible antagonism of the A1 adenosine receptor when using in vitro biological preparations. However, FSCPX (44) suffers from cleavage of the ester linkage separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine pharmacophore when used in in vivo biological preparations or preparations containing significant enzyme activity, presumably by esterases. Cleavage of the ester linkage renders FSCPX (44) inactive in terms of irreversible receptor binding. In order to obtain an irreversible A1 adenosine receptor antagonist with improved stability, and to further elucidate the effects of linker structure on pharmacological characteristics, several FSCPX (44) analogues incorporating the chemoreactive 4-(fluorosulfonyl)phenyl moiety were targeted, where the labile ester linkage has been replaced by more stable functionalites. In particular, ether, alkyl, amide and ketone linkers were targeted, where the length of the alkyl chain was varied from between one to five atoms. Synthesis of the target compounds was achieved via direct attachment of the N-3 substituent to the xanthine. These compounds were then tested for their biological activity at the A1 adenosine receptor via their ability to irreversibly antagonise the binding of [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX, ( 9) to the A1 adenosine receptor of DDT1 MF-2 cells. For comparison, the xanthines were also tested for their ability to inhibit the binding of [3H]-4-(2-[7-amino-2-{furyl} {1,2,4}- triazolo{2,3-a} {1,3,5}triazin-5-ylamino-ethyl)]phenol ([3H]ZM241385, 36) to the A2A adenosine receptor of PC-12 cells. The results suggest that the length and chemical composition of the linker separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine ring contribute to the potency and efficacy of the irreversible A1 adenosine receptor ligands. Like FSCPX (44, IC50 A1 = 11.8 nM), all derivatives possessed IC50 values in the low nM range under in vitro conditions. Compounds 94 (IC50 A1 = 165 nM), 95 (IC50 A1 = 112 nM) and 96 (IC50 A1 = 101 nM) possessing one, three and five methylene spacers within the linkage respectively, exhibited potent and selective binding to the A1 adenosine receptor versus the A2A adenosine receptor. Compound 94 did not exhibit any irreversible binding at A1 adenosine receptors, while 95 and 96 exhibit only weak irreversible binding at A1 adenosine receptors. Those compounds containing a benzylic carbonyl separating the 4-(fluorosulfonyl)phenyl moiety from the xanthine ring in the form of an amide (119, IC50 A1 = 24.9 nM, and 120, IC50 A1 = 21 nM) or ketone (151, IC50 A1 = 14 nM) proved to be the most potent, with compound 120 exhibiting the highest selectivity of 132-fold for the A receptor over the A2A receptor. compounds 119, 120 and 151 also strongly inhibited the binding of [3H]DPCPX irreversibly (82%, 83% and 78% loss of [3H]DPCPX binding at 100 nM respectively). compounds 120 and 151 are currently being evaluated for use in in vivo studies. Structure-activity studies suggest that altering the 8-cycloalkyl group of A1 selective xanthines for a 3-substituted or 2,3-disubstituted styryl, combined with N-7 methyl substitution will produce a compound with high affinity and selectivity for the A2A adenosine receptor over the A1 adenosine receptor. Compound 167 (IC50 A2A = 264 nM) possessing 8-(m-chloro)styryl substitution and the reactive 4-(fluorosulfonyl)phenyl moiety separated from the xanthine ring via an amide linker in the 3-position (as for 119 and 120), exhibited relatively potent binding to the A2A adenosine receptor of PC-12 cells, with a 16-fold selectivity for that receptor over the A1 adenosine receptor. However, compound 167 exhibited only very weak irreversible binding at A2A adenosine receptors. Overall, at this stage of biological testing, compound 120 appears to possess the most advantageous characteristics as an irreversible antagonist for the A1 adenosine receptor. This can be attributed to its high selectivity for the A1 adenosine receptor as compared to the A2A adenosine receptor. It also has relatively high potency for the A1 adenosine receptor, a concentration-dependent and selective inactivation of A1 adenosine receptors, and unbound ligand is easily removed (washed out) from biological membranes. These characteristics mean compound 151 has the potential to be a useful tool for the further study of the structure and function of the A1 adenosine receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of
natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepared using a space-holder sintering method. The
strength of the Ti6Ta4Sn scaffold with a porosity of 75% was found to be significantly higher than that of a pure Ti scaffold with the same porosity. The elastic modulus of the porous alloy can be customized to match that of
human bone by adjusting its porosity. In addition, the porous Ti6Ta4Sn alloy exhibited an interconnected porous structure, which enabled the ingrowth of new bone tissues. Cell culture results revealed that human SaOS2
osteoblast-like cells grew and spread well on the surfaces of the solid alloy, and throughout the porous scaffold. The surface roughness of the alloy showed a significant effect on the cell behavior, and the optimum surface
roughness range for the adhesion of the SaOS2 cell on the alloy was 0.15 to 0.35 mm. The present study illustrated the feasibility of using the porous Ti6Ta4Sn alloy scaffold as an orthopedic implant material with a special
emphasis on its excellent biomechanical properties and in vitro biocompatibility with a high preference by osteoblast-like cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multiple sclerosis, the immune system attacks the white matter of the brain and spinal cord, leading to disability and/or paralysis. Myelin, oligodendrocytes and neurons are lost due to the release by immune cells of cytotoxic cytokines, autoantibodies and toxic amounts of the excitatory neurotransmitter glutamate. Experimental autoimmune encephalomyelitis (EAE) is an animal model that exhibits the clinical and pathological features of multiple sclerosis. Current therapies that suppress either the inflammation or glutamate excitotoxicity are partially effective when administered at an early stage of EAE, but cannot block advanced disease. In a multi-faceted approach to combat EAE, we blocked inflammation with an anti-MAdCAM-1 (mucosal addressin cell adhesion molecule-1) monoclonal antibody and simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate antagonist 2,3-dihydroxy-6-nitro-7- sulfamoylbenzo(f)quinoxaline (NBQX) and the neuroprotector glycine–proline–glutamic acid (GPE; N-terminal tripeptide of insulin-like growth factor). Remarkably, administration at an advanced stage of unremitting EAE of either a combination of NBQX and GPE, or preferably all three latter reagents, resulted in amelioration of disease and repair of the CNS, as assessed by increased oligodendrocyte survival and remyelination, and corresponding decreased paralysis, inflammation, CNS apoptosis and axonal damage. Each treatment reduced the expression of nitric oxide and a large panel of proinflammatory and immunoregulatory cytokines, in particular IL-6 which plays a critical role in mediating EAE. Mice displayed discernible improvements in all physical features examined. Disease was suppressed for 5 weeks, but relapsed when treatment was suspended, suggesting treatment must be maintained to be effective. The above approaches, which allow CNS repair by inhibiting inflammation and/or simultaneously protect neurons and oligodendrocytes from damage, could thus be effective therapies for multiple sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing ΔF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and ΔF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on ΔF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing ΔF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The ΔF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance (MDR) is one of the most common complex phenomenons exhibited by cancer cells. It is a very common property of melanoma postchemotherapy. MDR transporters, ATP binding cassette (ABC) transporters, play a critical role in conferring this property to melanoma cells. miRNA are post-transcriptional regulators that regulate the expression of these ABC transporters. Targeting these miRNA, in turn targeting ABC transporters with the help of nanodelivery systems to overcome drug resistance, is the primary focus for attaining successful treatment methods for drug-resistant melanoma. These delivery systems are endocytosed by the cancer cells and do not require ABC transporters for their delivery, being a promising therapeutic measure for melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Despite the detailed knowledge of the absorption and incorporation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into plasma lipids and red blood cells (RBC) in humans, very little is known about docosapentaenoic acid (DPA, 22:5 n-3). The aim of this study was to investigate the uptake and incorporation of pure DPA and EPA into human plasma and RBC lipids.

Methods Ten female participants received 8 g of pure DPA or pure EPA in randomized crossover double-blinded manner over a 7-day period. The placebo treatment was olive oil. Blood samples were collected at days zero, four and seven, following which the plasma and RBC were separated and used for the analysis of fatty acids.

Results Supplementation with DPA significantly increased the proportions of DPA in the plasma phospholipids (PL) (by twofold) and triacylglycerol (TAG) fractions (by 2.3-fold, day 4). DPA supplementation also significantly increased the proportions of EPA in TAG (by 3.1-fold, day 4) and cholesterol ester (CE) fractions (by 2.0-fold, day 7) and of DHA in TAG fraction (by 3.1-fold, day 4). DPA proportions in RBC PL did not change following supplementation. Supplementation with EPA significantly increased the proportion of EPA in the plasma CE and PL fractions, (both by 2.7-fold, day 4 and day 7) and in the RBC PL (by 1.9-fold, day 4 and day 7). EPA supplementation did not alter the proportions of DPA or DHA in any lipid fraction. These results showed that within day 4 of supplementation, DPA and EPA demonstrated different and specific incorporation patterns.

Conclusion The results of this short-term study suggest that DPA may act as a reservoir of the major long-chain n-3 fatty acids (LC n-3 PUFA) in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To develop polymeric-ceramic nanocarriers (NCs) in order to achieve oral delivery of the anticancer neutraceutical iron-saturated bovine lactoferrin (Fe-bLf) protein.

Materials & methods: Fe-bLf or paclitaxel (Taxol®) were adsorbed onto calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate. The Fe-bLf or Taxol-loaded NCs indicated as AEC–CP–Fe-bLf or AEC–CP–Taxol NCs, respectively, were made by combination of ionic gelation and nanoprecipitation. Size distribution, morphology, internalization and release profiles of the NCs were studied along with evaluation of in vitro and in vivo anticancer activities and compared with paclitaxel.

Results: AEC–CP–Fe-bLf NCs obtained spherical morphology and showed enhanced endocytosis, transcytosis and anticancer activity in Caco-2 cells in vitro. AEC–CP–Fe-bLf NCs were supplemented in an AIN 93G diet and fed to mice in both prevention and treatment human xenograft colon cancer models. AEC–CP–Fe-bLf NCs were found to be highly significantly effective when given orally, as a pretreatment, 1 week before Caco-2 cell injections. None of the mice from the AEC–CP–Fe-bLf NC-fed group developed tumors or showed any signs of toxicity, while the mice fed the control AIN 93G diet showed normal tumor growth. Fe-bLf or Taxol, when given orally in a diet as nanoformulations post-tumor development, showed a significant regression in the tumor size with complete inhibition of tumor growth later, while intratumoral injection of Taxol just delayed the growth of tumors. The pharmacokinetic and bioavailability studies indicated that nanoformulated Fe-bLf was predominantly present on tumor cells compared to non-nanoformulated Fe-bLf. Fe-bLf-loaded NCs were found to help in absorption of iron and thus may have utility in enhancing the iron uptake during iron deficiency without interfering with the absorption of calcium.

Conclusion: With the promising results of our study, the future potential of NC-loaded Fe-bLf in chemoprevention and in the treatment of human colon cancer, deserves further investigation for translational research and preclinical studies of other malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotavirus replication occurs in vivo in intestinal epithelial cells. Cell lines fully permissive to rotavirus include kidney epithelial (MA104), colonic (Caco-2) and hepatic (HepG2) types. Previously, it has been shown that cellular integrins α2β1, α4β1 and αXβ2 are involved in rotavirus cell entry. As receptor usage is a major determinant of virus tropism, the levels of cell surface expression of these integrins have now been investigated by flow cytometry on cell lines of human (Caco-2, HepG2, RD, K562) and monkey (MA104, COS-7) origin in relation to cellular susceptibility to infection with monkey and human rotaviruses. Cells supporting any replication of human rotaviruses (RD, HepG2, Caco-2, COS-7 and MA104) expressed α2β1 and (when tested) αXβ2, whereas the non-permissive K562 cells did not express α2β1, α4β1 or αXβ2. Only RD cells expressed α4β1. Although SA11 grew to higher titres in RD, HepG2, Caco-2, COS-7 and MA104 cells, this virus still replicated at a low level in K562 cells. In all cell lines tested, SA11 replicated to higher titres than did human strains, consistent with the ability of SA11 to use sialic acids as alternative receptors. Levels of cell surface α2 integrin correlated with levels of rotavirus growth. The α2 integrin relative linear median fluorescence intensity on K562, RD, COS-7, MA104 and Caco-2 cells correlated linearly with the titre of SA11 produced in these cells at 20 h after infection at a multiplicity of 0·1, and the data best fitted a sigmoidal dose–response curve (r2=1·00, P=0·005). Thus, growth of rotaviruses in these cell lines correlates with their surface expression of α2β1 integrin and is consistent with their expression of αXβ2 and α4β1 integrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The purpose of this investigation was to determine the effect of ingested caffeine, sodium bicarbonate, and their combination on 2,000-m rowing performance, as well as on induced alkalosis (blood and urine pH and blood bicarbonate concentration [HCO3 -]), blood lactate concentration ([La-]), gastrointestinal symptoms, and rating of perceived exertion (RPE). Methods: In a double-blind, crossover study, 8 well-trained rowers performed 2 baseline tests and 4 × 2,000-m rowing-ergometer tests after ingesting 6 mg/kg caffeine, 0.3 g/kg body mass (BM) sodium bicarbonate, both supplements combined, or a placebo. Capillary blood samples were collected at preingestion, pretest, and posttest time points. Pairwise comparisons were made between protocols, and differences were interpreted in relation to the likelihood of exceeding the smallest-worthwhile- change thresholds for each variable. A likelihood of >75% was considered a substantial change. Results: Caffeine supplementation elicited a substantial improvement in 2,000-m mean power, with mean (± SD) values of 354 ± 67 W vs. placebo with 346 ± 61 W. Pretest [HCO3 -] reached 29.2 ± 2.9 mmol/L with caffeine + bicarbonate and 29.1 ± 1.9 mmol/L with bicarbonate. There were substantial increases in pretest [HCO3 -] and pH and posttest urine pH after bicarbonate and caffeine + bicarbonate supplementation compared with placebo, but unclear performance effects. Conclusions: Rowers' performance in 2,000-m efforts can improve by ~2% with 6 mg/kg BM caffeine supplementation. When caffeine is combined with sodium bicarbonate, gastrointestinal symptoms may prevent performance enhancement, so further investigation of ingestion protocols that minimize side effects is required. ABSTRACT FROM AUTHOR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. © 2014 Biophysical Society.