986 resultados para text-dependent speaker recognition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants contain RNA-dependent RNA polymerase (RdRP) activities that synthesize short cRNAs by using cellular or viral RNAs as templates. During studies of salicylic acid (SA)-induced resistance to viral pathogens, we recently found that the activity of a tobacco RdRP was increased in virus-infected or SA-treated plants. Biologically active SA analogs capable of activating plant defense response also induced the RdRP activity, whereas biologically inactive analogs did not. A tobacco RdRP gene, NtRDRP1, was isolated and found to be induced both by virus infection and by treatment with SA or its biologically active analogs. Tobacco lines deficient in the inducible RDRP activity were obtained by expressing antisense RNA for the NtRDRP1 gene in transgenic plants. When infected by tobacco mosaic virus, these transgenic plants accumulated significantly higher levels of viral RNA and developed more severe disease symptoms than wild-type plants. After infection by a strain of potato virus X that does not spread in wild-type tobacco plants, the transgenic NtRDRP1 antisense plants accumulated virus and developed symptoms not only locally in inoculated leaves but also systemically in upper uninoculated leaves. These results strongly suggest that inducible RdRP activity plays an important role in plant antiviral defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although much of the brain’s functional organization is genetically predetermined, it appears that some noninnate functions can come to depend on dedicated and segregated neural tissue. In this paper, we describe a series of experiments that have investigated the neural development and organization of one such noninnate function: letter recognition. Functional neuroimaging demonstrates that letter and digit recognition depend on different neural substrates in some literate adults. How could the processing of two stimulus categories that are distinguished solely by cultural conventions become segregated in the brain? One possibility is that correlation-based learning in the brain leads to a spatial organization in cortex that reflects the temporal and spatial clustering of letters with letters in the environment. Simulations confirm that environmental co-occurrence does indeed lead to spatial localization in a neural network that uses correlation-based learning. Furthermore, behavioral studies confirm one critical prediction of this co-occurrence hypothesis, namely, that subjects exposed to a visual environment in which letters and digits occur together rather than separately (postal workers who process letters and digits together in Canadian postal codes) do indeed show less behavioral evidence for segregated letter and digit processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant-intracellular interaction of the avirulence protein AvrPto of Pseudomonas syringae pathovar tomato, the agent of bacterial speck disease, and the corresponding tomato resistance protein Pto triggers responses leading to disease resistance. Pto, a serine/threonine protein kinase, also interacts with a putative downstream kinase, Pto-interactor 1, as well as with members of a family of transcription factors Pto-interactors 4, 5, and 6. These proteins are likely involved, respectively, in a phosphorylation cascade resulting in hypersensitive cell death, and in defense gene activation. The mechanism by which the interaction of AvrPto and Pto initiates defense response signaling is not known. To pursue the hypothesis that tertiary interactions are involved, we modified the yeast two-hybrid protein interaction trap and conducted a search for tomato proteins that interact with Pto only in the presence of AvrPto. Five classes of AvrPto-dependent Pto interactors were isolated, and their interaction specificity confirmed. Also, to shed light on a recently demonstrated virulence activity of AvrPto, we conducted a standard two-hybrid screen for tomato proteins in addition to Pto that interact with AvrPto: i.e., potential virulence targets or modifiers of AvrPto. By constructing an N-terminal rather than a C-terminal fusion of AvrPto to the LexA DNA binding domain, we were able to overcome autoactivation by AvrPto and identify four classes of specific AvrPto-interacting proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) play a central role in regulating immune activation and responses to self. DC maturation is central to the outcome of antigen presentation to T cells. Maturation of DCs is inhibited by physiological levels of 1α,25 dihydroxyvitamin D3 [1α,25(OH)2D3] and a related analog, 1α,25(OH)2-16-ene-23-yne-26,27-hexafluoro-19-nor-vitamin D3 (D3 analog). Conditioning of bone marrow cultures with 10−10 M D3 analog resulted in accumulation of immature DCs with reduced IL-12 secretion and without induction of transforming growth factor β1. These DCs retained an immature phenotype after withdrawal of D3 analog and exhibited blunted responses to maturing stimuli (CD40 ligation, macrophage products, or lipopolysaccharide). Resistance to maturation depended on the presence of the 1α,25(OH)2D3 receptor (VDR). In an in vivo model of DC-mediated antigen-specific sensitization, D3 analog-conditioned DCs failed to sensitize and, instead, promoted prolonged survival of subsequent skin grafts expressing the same antigen. To investigate the physiologic significance of 1α,25(OH)2D3/VDR-mediated modulation of DC maturity we analyzed DC populations from mice lacking VDR. Compared with wild-type animals, VDR-deficient mice had hypertrophy of subcutaneous lymph nodes and an increase in mature DCs in lymph nodes but not spleen. We conclude that 1α,25(OH)2D3/VDR mediates physiologically relevant inhibition of DC maturity that is resistant to maturational stimuli and modulates antigen-specific immune responses in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimeric intercellular adhesion molecule-1 (ICAM-1) binds more efficiently to lymphocyte function-associated antigen-1 (LFA-1) than monomeric ICAM-1. However, it is unknown whether dimerization enhances binding simply by providing two ligand-binding sites and thereby increasing avidity, or whether it serves to generate a single “fully competent” LFA-1-binding surface. Domain 1 of ICAM-1 contains both the binding site for LFA-1, centered on residue E34, and a homodimerization interface. Whether the LFA-1-binding site extends across the homodimerization interface has not been tested. To address this question, we constructed four different heterodimeric soluble forms of ICAM-1 joined at the C terminus via an α-helical coiled coil (ACID-BASE). These heterodimeric ICAM-1 constructs include, (i) E34/E34 (two intact LFA-1-binding sites), (ii) E34/K34 (one disrupted LFA-1-binding site), (iii) E34/ΔD1–2 (one deleted LFA-1-binding site), and (iv) K34/K34 (two disrupted LFA-1-binding sites). Cells bearing activated LFA-1 bound similarly to surfaces coated with either E34/K34 or E34/ΔD1–2 and with an ≈2-fold reduction in efficiency compared with E34/E34, suggesting that D1 dimerization, which is precluded in E34/ΔD1-D2, is not necessary for optimal LFA-1 binding. Furthermore, BIAcore (BIAcore, Piscataway, NJ) affinity measurements revealed that soluble open LFA-1 I domain bound to immobilized soluble ICAM-1, E34/E34, E34/K34, and E34/ΔD1-D2 with nearly identical affinities. These studies demonstrate that a single ICAM-1 monomer, not dimeric ICAM-1, represents the complete, “fully competent” LFA-1-binding surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

JC virus is activated to replicate in glial cells of many AIDS patients with neurological disorders. In human glial cells, the human immunodeficiency virus 1 (HIV-1) Tat protein activates the major late promoter of JC virus through a Tat-responsive DNA element, termed upTAR, which is a recognition site for cellular Purα, a sequence-specific single-stranded DNA binding protein implicated in cell cycle control of DNA replication and transcription. Tat interacts with two leucine-rich repeats in Purα to form a complex that can be immunoprecipitated from cell extracts. Tat enhances the ability of purified glutathione S-transferase-Purα (GST-Purα) to bind the upTAR element. Tat acts synergistically with Purα, in a cell-cycle-dependent manner, to activate transcription at an upTAR element placed upstream of a heterologous promoter. Since Purα is ubiquitously expressed in human cells and since PUR elements are located near many promoters and origins of replication, the Tat-Purα interaction may be implicated in effects of HIV-1 throughout the full range of HIV-1-infected cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrin receptors serve as mechanical links between the cell and its structural environment. Using αvβ3 integrin expressed in K562 cells as a model system, the process by which the mechanical connection between αvβ3 and vitronectin develops was analyzed by measuring the resistance of these bonds to mechanical separation. Three distinct stages of activation, as defined by increases in the αvβ3-vitronectin binding strength, were defined by mutational, biochemical, and biomechanical analyses. Activation to the low binding strength stage 1 occurs through interaction with the vitronectin ligand and leads to the phosphorylation of Y747 in the β3 subunit. Stage 2 is characterized by a 4-fold increase in binding strength and is dependent on stage1 and the phosphorylation of Y747. Stage 3 is characterized by a further 2.5-fold increase in binding strength and is dependent on stage 2 events and the availability of Y759 for interaction with cellular proteins. The Y747F mutant blocked the transition from stage 1 to stage 2, and the Y759F blocked the transition from stage 2 to stage 3. The data suggest a model for tension-induced activation of αvβ3 integrin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A “spindle assembly” checkpoint has been described that arrests cells in G1 following inappropriate exit from mitosis in the presence of microtubule inhibitors. We have here addressed the question of whether the resulting tetraploid state itself, rather than failure of spindle function or induction of spindle damage, acts as a checkpoint to arrest cells in G1. Dihydrocytochalasin B induces cleavage failure in cells where spindle function and chromatid segregation are both normal. Notably, we show here that nontransformed REF-52 cells arrest indefinitely in tetraploid G1 following cleavage failure. The spindle assembly checkpoint and the tetraploidization checkpoint that we describe here are likely to be equivalent. Both involve arrest in G1 with inactive cdk2 kinase, hypophosphorylated retinoblastoma protein, and elevated levels of p21WAF1 and cyclin E. Furthermore, both require p53. We show that failure to arrest in G1 following tetraploidization rapidly results in aneuploidy. Similar tetraploid G1 arrest results have been obtained with mouse NIH3T3 and human IMR-90 cells. Thus, we propose that a general checkpoint control acts in G1 to recognize tetraploid cells and induce their arrest and thereby prevents the propagation of errors of late mitosis and the generation of aneuploidy. As such, the tetraploidy checkpoint may be a critical activity of p53 in its role of ensuring genomic integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory granules store neuropeptides and hormones and exhibit regulated exocytosis upon appropriate cellular stimulation. They are generated in the trans-Golgi network as immature secretory granules, short-lived vesicular intermediates, which undergo a complex and poorly understood maturation process. Due to their short half-life and low abundance, real-time studies of immature secretory granules have not been previously possible. We describe here a pulse/chase-like system based on the expression of a human chromogranin B-GFP fusion protein in neuroendocrine PC12 cells, which permits direct visualization of the budding of immature secretory granules and their dynamics during maturation. Live cell imaging revealed that newly formed immature secretory granules are transported in a direct and microtubule-dependent manner within a few seconds to the cell periphery. Our data suggest that the cooperative action of microtubules and actin filaments restricts immature secretory granules to the F-actin-rich cell cortex, where they move randomly and mature completely within a few hours. During this maturation period, secretory granules segregate into pools of different motility. In a late phase of maturation, 60% of secretory granules were found to be immobile and about half of these underwent F-actin-dependent tethering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smads are signal mediators for the members of the transforming growth factor-β (TGF-β) superfamily. Upon phosphorylation by the TGF-β receptors, Smad3 translocates into the nucleus, recruits transcriptional coactivators and corepressors, and regulates transcription of target genes. Here, we show that Smad3 activated by TGF-β is degraded by the ubiquitin–proteasome pathway. Smad3 interacts with a RING finger protein, ROC1, through its C-terminal MH2 domain in a ligand-dependent manner. An E3 ubiquitin ligase complex ROC1-SCFFbw1a consisting of ROC1, Skp1, Cullin1, and Fbw1a (also termed βTrCP1) induces ubiquitination of Smad3. Recruitment of a transcriptional coactivator, p300, to nuclear Smad3 facilitates the interaction with the E3 ligase complex and triggers the degradation process of Smad3. Smad3 bound to ROC1-SCFFbw1a is then exported from the nucleus to the cytoplasm for proteasomal degradation. TGF-β/Smad3 signaling is thus irreversibly terminated by the ubiquitin–proteasome pathway.