997 resultados para terahertz radiation
Resumo:
To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
Naturally occurring radioactive materials (NORM) under certain conditions can reach hazardous radiological levels contributing to an additional exposure dose to ionizing radiation. Most environmental concerns are associated with uranium mining and milling sites, but the same concerns should be addressed to natural near surface occurrences of uranium as well as man-made sources such as technologically enhanced naturally occurring radioactive materials (TENORM) resulting from phosphates industry, ceramic industry and energy production activities, in particular from coal-fired power plants which is one of the major sources of increased exposure to man from enhanced naturally occurring materials. This work describes the methodology developed to assess the environmental radiation by in situ gamma spectrometry in the vicinity of a Portuguese coal fired power plant. The current investigation is part of a research project that is undergoing in the vicinity of Sines Coal-Fired Power Plant (south of Portugal) until the end of 2013.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
Coal contains trace elements and naturally occurring radionuclides such as 40K, 232Th, 238U. When coal is burned, minerals, including most of the radionuclides, do not burn and concentrate in the ash several times in comparison with their content in coal. Usually, a small fraction of the fly ash produced (2-5%) is released into the atmosphere. The activities released depend on many factors (concentration in coal, ash content and inorganic matter of the coal, combustion temperature, ratio between bottom and fly ash, filtering system). Therefore, marked differences should be expected between the by-products produced and the amount of activity discharged (per unit of energy produced) from different coal-fired power plants. In fact, the effects of these releases on the environment due to ground deposition have been received some attention but the results from these studies are not unanimous and cannot be understood as a generic conclusion for all coal-fired power plants. In this study, the dispersion modelling of natural radionuclides was carried out to assess the impact of continuous atmospheric releases from a selected coal plant. The natural radioactivity of the coal and the fly ash were measured and the dispersion was modelled by a Gaussian plume estimating the activity concentration at different heights up to a distance of 20 km in several wind directions. External and internal doses (inhalation and ingestion) and the resulting risk were calculated for the population living within 20 km from the coal plant. In average, the effective dose is lower than the ICRP’s limit and the risk is lower than the U.S. EPA’s limit. Therefore, in this situation, the considered exposure does not pose any risk. However, when considering the dispersion in the prevailing wind direction, these values are significant due to an increase of 232Th and 226Ra concentrations in 75% and 44%, respectively.
Resumo:
A set of radiation measurements were carried out in several public and private institutions. These were selected with basis on the people affluence and passage to these sites. These measurements were registration formed either indoor, outdoor or underground and were compiled in three Case Studies. Radiation doses measurements were also made, surface and underground locations, and compiled in other two Case Studies. There were sampled, at the same time, humidity, temperature, atmospheric pressure and relevant construction materials at sampling locations. They were collected and registration formed to analyse if there is any relation or contribution for the measured value in each specific place. Geostatistical models were used to elaborate maps of the results both for radiation values and for doses. Preliminary relations were established among the measured parameters.
Resumo:
RESUMO: O cancro de mama e o mais frequente diagnoticado a indiv duos do sexo feminino. O conhecimento cientifico e a tecnologia tem permitido a cria ção de muitas e diferentes estrat egias para tratar esta patologia. A Radioterapia (RT) est a entre as diretrizes atuais para a maioria dos tratamentos de cancro de mama. No entanto, a radia ção e como uma arma de dois canos: apesar de tratar, pode ser indutora de neoplasias secund arias. A mama contralateral (CLB) e um orgão susceptivel de absorver doses com o tratamento da outra mama, potenciando o risco de desenvolver um tumor secund ario. Nos departamentos de radioterapia tem sido implementadas novas tecnicas relacionadas com a radia ção, com complexas estrat egias de administra ção da dose e resultados promissores. No entanto, algumas questões precisam de ser devidamente colocadas, tais como: E seguro avançar para tecnicas complexas para obter melhores indices de conformidade nos volumes alvo, em radioterapia de mama? O que acontece aos volumes alvo e aos tecidos saudaveis adjacentes? Quão exata e a administração de dose? Quais são as limitações e vantagens das técnicas e algoritmos atualmente usados? A resposta a estas questões e conseguida recorrendo a m etodos de Monte Carlo para modelar com precisão os diferentes componentes do equipamento produtor de radia ção(alvos, ltros, colimadores, etc), a m de obter uma descri cão apropriada dos campos de radia cão usados, bem como uma representa ção geometrica detalhada e a composição dos materiais que constituem os orgãos e os tecidos envolvidos. Este trabalho visa investigar o impacto de tratar cancro de mama esquerda usando diferentes tecnicas de radioterapia f-IMRT (intensidade modulada por planeamento direto), IMRT por planeamento inverso (IMRT2, usando 2 feixes; IMRT5, com 5 feixes) e DCART (arco conformacional dinamico) e os seus impactos em irradia ção da mama e na irradia ção indesejada dos tecidos saud aveis adjacentes. Dois algoritmos do sistema de planeamento iPlan da BrainLAB foram usados: Pencil Beam Convolution (PBC) e Monte Carlo comercial iMC. Foi ainda usado um modelo de Monte Carlo criado para o acelerador usado (Trilogy da VARIAN Medical Systems), no c odigo EGSnrc MC, para determinar as doses depositadas na mama contralateral. Para atingir este objetivo foi necess ario modelar o novo colimador multi-laminas High- De nition que nunca antes havia sido simulado. O modelo desenvolvido est a agora disponí vel no pacote do c odigo EGSnrc MC do National Research Council Canada (NRC). O acelerador simulado foi validado com medidas realizadas em agua e posteriormente com c alculos realizados no sistema de planeamento (TPS).As distribui ções de dose no volume alvo (PTV) e a dose nos orgãos de risco (OAR) foram comparadas atrav es da an alise de histogramas de dose-volume; an alise estati stica complementar foi realizadas usando o software IBM SPSS v20. Para o algoritmo PBC, todas as tecnicas proporcionaram uma cobertura adequada do PTV. No entanto, foram encontradas diferen cas estatisticamente significativas entre as t ecnicas, no PTV, nos OAR e ainda no padrão da distribui ção de dose pelos tecidos sãos. IMRT5 e DCART contribuem para maior dispersão de doses baixas pelos tecidos normais, mama direita, pulmão direito, cora cão e at e pelo pulmão esquerdo, quando comparados com as tecnicas tangenciais (f-IMRT e IMRT2). No entanto, os planos de IMRT5 melhoram a distribuição de dose no PTV apresentando melhor conformidade e homogeneidade no volume alvo e percentagens de dose mais baixas nos orgãos do mesmo lado. A t ecnica de DCART não apresenta vantagens comparativamente com as restantes t ecnicas investigadas. Foram tamb em identi cadas diferen cas entre os algoritmos de c alculos: em geral, o PBC estimou doses mais elevadas para o PTV, pulmão esquerdo e cora ção, do que os algoritmos de MC. Os algoritmos de MC, entre si, apresentaram resultados semelhantes (com dferen cas at e 2%). Considera-se que o PBC não e preciso na determina ção de dose em meios homog eneos e na região de build-up. Nesse sentido, atualmente na cl nica, a equipa da F sica realiza medi ções para adquirir dados para outro algoritmo de c alculo. Apesar de melhor homogeneidade e conformidade no PTV considera-se que h a um aumento de risco de cancro na mama contralateral quando se utilizam t ecnicas não-tangenciais. Os resultados globais dos estudos apresentados confirmam o excelente poder de previsão com precisão na determinação e c alculo das distribui ções de dose nos orgãos e tecidos das tecnicas de simulação de Monte Carlo usados.---------ABSTRACT:Breast cancer is the most frequent in women. Scienti c knowledge and technology have created many and di erent strategies to treat this pathology. Radiotherapy (RT) is in the actual standard guidelines for most of breast cancer treatments. However, radiation is a two-sword weapon: although it may heal cancer, it may also induce secondary cancer. The contralateral breast (CLB) is a susceptible organ to absorb doses with the treatment of the other breast, being at signi cant risk to develop a secondary tumor. New radiation related techniques, with more complex delivery strategies and promising results are being implemented and used in radiotherapy departments. However some questions have to be properly addressed, such as: Is it safe to move to complex techniques to achieve better conformation in the target volumes, in breast radiotherapy? What happens to the target volumes and surrounding healthy tissues? How accurate is dose delivery? What are the shortcomings and limitations of currently used treatment planning systems (TPS)? The answers to these questions largely rely in the use of Monte Carlo (MC) simulations using state-of-the-art computer programs to accurately model the di erent components of the equipment (target, lters, collimators, etc.) and obtain an adequate description of the radiation elds used, as well as the detailed geometric representation and material composition of organs and tissues. This work aims at investigating the impact of treating left breast cancer using di erent radiation therapy (RT) techniques f-IMRT (forwardly-planned intensity-modulated), inversely-planned IMRT (IMRT2, using 2 beams; IMRT5, using 5 beams) and dynamic conformal arc (DCART) RT and their e ects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB TPS were used: Pencil Beam Convolution (PBC)and commercial Monte Carlo (iMC). Furthermore, an accurate Monte Carlo (MC) model of the linear accelerator used (a Trilogy R VARIANR) was done with the EGSnrc MC code, to accurately determine the doses that reach the CLB. For this purpose it was necessary to model the new High De nition multileaf collimator that had never before been simulated. The model developed was then included on the EGSnrc MC package of National Research Council Canada (NRC). The linac was benchmarked with water measurements and later on validated against the TPS calculations. The dose distributions in the planning target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all the techniques provided adequate coverage of the PTV. However, statistically significant dose di erences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung, heart and even the left lung than tangential techniques (f-IMRT and IMRT2). However,IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Di erences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the MC algorithms predicted. The MC algorithms presented similar results (within 2% di erences). The PBC algorithm was considered not accurate in determining the dose in heterogeneous media and in build-up regions. Therefore, a major e ort is being done at the clinic to acquire data to move from PBC to another calculation algorithm. Despite better PTV homogeneity and conformity there is an increased risk of CLB cancer development, when using non-tangential techniques. The overall results of the studies performed con rm the outstanding predictive power and accuracy in the assessment and calculation of dose distributions in organs and tissues rendered possible by the utilization and implementation of MC simulation techniques in RT TPS.
Resumo:
Among PET radiotracers, FDG seems to be quite accepted as an accurate oncology diagnostic tool, frequently helpful also in the evaluation of treatment response and in radiation therapy treatment planning for several cancer sites. To the contrary, the reliability of Choline as a tracer for prostate cancer (PC) still remains an object of debate for clinicians, including radiation oncologists. This review focuses on the available data about the potential impact of Choline-PET in the daily clinical practice of radiation oncologists managing PC patients. In summary, routine Choline-PET is not indicated for initial local T staging, but it seems better than conventional imaging for nodal staging and for all patients with suspected metastases. In these settings, Choline-PET showed the potential to change patient management. A critical limit remains spatial resolution, limiting the accuracy and reliability for small lesions. After a PSA rise, the problem of the trigger PSA value remains crucial. Indeed, the overall detection rate of Choline-PET is significantly increased when the trigger PSA, or the doubling time, increases, but higher PSA levels are often a sign of metastatic spread, a contraindication for potentially curable local treatments such as radiation therapy. Even if several published data seem to be promising, the current role of PET in treatment planning in PC patients to be irradiated still remains under investigation. Based on available literature data, all these issues are addressed and discussed in this review.
Resumo:
Surgery has historically been the standard of care for operable stage I non-small cell lung cancer (NSCLC). However, nearly one-quarter of patients with stage I NSCLC will not undergo surgery because of medical comorbidity or other factors. Stereotactic ablative radiotherapy (SABR) is the new standard of care for these patients. SABR offers high local tumour control rates rivalling the historical results of surgery and is generally well tolerated by patients with both peripheral and centrally located tumours. This article reviews the history of SABR for stage I NSCLC, summarises the currently available data on efficacy and toxicity, and describes some of the currently controversial aspects of this treatment.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
Young soybean plants (Glycine ~. L. cultivar Harosoy '63), grown under controlled conditions, were exposed to gamma radiation on a single occasion. One hour following exposure to 3,750 rads, the mature trifoliate leaf of the soybean plant was isolated in a closed system and permitted to photoassimilate approximately 1-5 pCi of 14C02 for 15 minutes. After an additional 45 minute-period, the plant was sacrificed and the magnitude of translocation and distribution pattern of 14C determined. In the non-irradiated plants 18~ of the total 14C recovered was outside the fed leaf blades and of this translocated 14c, 28~ was above the node of the fed leaf, 38~ in the stem below the node, 28~ in the roots and 7~ in the petiole. As well, in the irradiated plants, a smaller per cent (6~) of the total 14 C recovered was exported out of the source leaf blades. Of this translocated 14c , a smaller per cent (20~) was found in the apical region above the node of the source leaf and a higher per cent (45~) was recovered from the stem below the node and in the petiole (11~). The per cent of exported 14 C recovered from the root was unaffected by the radiation. Replacement of the shoot apex with 20 ppm IAA immediately following irradiation, only J partially increased the magnitude of translocation but did completely restore the pattern of distribution to that observed in the non-irradiated plants. From supplementary studies showing a radiationinduced reduction of photosynthetic rates in the source leaf and a reduction of the cumulative stem and leaf lengths in the apical sink region, the observed effects of radiation on the translocation process have been correlated to damage incurred by the source and sink regions. These data suggest that the reduction in the magnitude of translocation is the result of damage to both the source and sink regions rather than the phloem conducting tissue itself, whereas the change in the pattern of translocation is probably the result of a reduced rate of 14C-assimilate movement caused by a radiation-induced decrease of sink metabolism, especially the decrease in the metabolism of the apical sink.
Resumo:
Since previous investigations have shown that low levels of ionizing radiation can induce a reduction in the rates of apparent photosynthesis and in the magnitude of photoassimilated l4C exported out of a leaf, the present studies were designed and conducted to determine the relationship, if any, between the radiation effects on these two physiological processes. The experiments were particularly designed to determine if the radiation-induced reduction in export is the result of the reduction in photosynthesis and hence availability of materials for translocation or the result of a reduction in the amount of energy available for the vein loading process. This study has shown that the radiation-induced reduction in l4C export out of a leaf is likely related to a loss of energy available for the vein loading process rather than a reduction in the supply of materials available for export due to reduced C02 uptake. The process of photophosphorylation was shown to be reduced by exposure to radiation to an extent similar to the reduction in the export of l4C which was also observed. Both of these processes returned to their pre-irradiation rates 120 minutes following radiatruon exposure. The rate of photosynthetic C02 uptake was also reduced by radiation exposur~ howeve~ this process did not return to the control level nor was the extent of reduction as large as observed for photophosphorylation and photoassimilate export. The observed relationship between the reductions of export and photoph~sphorylation pointed to the utilization of photosynthetically produced ATP in the vein loading process. The radiation-induced reduction in the export of l4C was observed at the highest light intensity used in this study which would also imply the involvement of the photophosphorylation process as an energy seurce for vein loading. The lack of radiation-induced reduction in export at low light intensities was interpreted as being due to the utilization of respiratory derived ATP, a process known to be insensitive to radiation at the levels used in this study, as the energy source for the vein loading process. Studies using plants not stressed by radiation showed that there was an increase in export of 14C with higher light intensities. In summary, the data has been interpreted as showing that at high light intensities the ATP, produced by photophosphorylation, is available for use in the vein loading process. The site of ATP utilization could not be determined from the data obtained in this study but possible sites have been indicated from the work done by other physiologists and are discussed in the thesis.