1000 resultados para structural cardiomyopathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Sr2FeMoO6 (SFMO) thin films were studied with the main focus on their magnetic and magneto-transport properties. The fabrication process of pulsed laser deposited SFMO films was first optimized. Then the effects of strain, film thickness and substrate were thoroughly investigated. In addition to these external factors, the effect of intrinsic defects on the magnetic properties of SFMO were also clarified. Secondly, the magnetoresistivity mechanims of SFMO films were studied and a semiempirical model of the temperature dependence of resistivity was introduced. The films were grown on single crystal substrates using a ceramic target made with sol-gel method. The structural characterization of the films were carried out with X-ray diffraction, atomic force microscopy, transmission electron microscopy and high kinetic energy photoelectron spectroscopy. The magnetic properties were measured with SQUID magnetometer and the magneto-transport properties by magnetometer with a resistivity option. SFMO films with the best combination of structural and magnetic properties were grown in Ar atmosphere at 1050 °C . Their magnetic properties could not be improved by the ex situ post-annealing treatments aside from the treatments in ultra-high vacuum conditions. The optimal film thickness was found to be around 150 nm and only small improvement in the magnetic properties with decreasing strain was observed. Instead, the magnetic properties were observed to be highly dependent on the choice of the substrate due to the lattice mismatch induced defects, which are best avoided by using the SrTiO3 substrate. The large difference in the Curie temperature and the saturation magnetization between the SFMO thin film and polycrystalline bulk samples was connected to the antisite disorder and oxygen vacancies. Thus, the Curie temperature of SFMO thin films could be improved by increasing the amount of oxygen vacancies for example with ultra-high vacuum treatments or improving the B-site ordering by further optimization of the deposition parameters. The magneto-transport properties of SFMO thin films do not follow any conventional models, but the temperature dependence of resistivity was succesfully described with a model of two spin channel system. Also, evidences that the resistivity-temperature behaviour of SFMO thin films is dominated by the structural defects, which reduce the band gap in the majority spin band were found. Moreover, the magnetic field response of the resistivity in SFMO thin films were found to be superposition of different mechanisms that seems to be related to the structural changes in the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoserine aminotrasferase (PSAT: EC 2.6.1.52) is a vitamin B6-dependent enzyme and a member of the subgroup IV in the aminotransferase superfamily. Here, X-ray crystallography was used to determine the structure of PSAT from Bacillus alcalophilus with pyridoxamine 5′-phosphate (PMP) at high resolution (1.57 Å). In addition, analysis of active residues and their conformational changes was performed. The structure is of good quality as indicated, for example, by the last recorded Rwork and Rfree numbers (0.1331 and 0.1495, respectively). The enzyme was initially crystallized in the presence of substrate L-glutamate with the idea to produce the enzyme-substrate complex. However, the structure determination revealed no glutamate bound at the active site. Instead, the Schiff base between Lys196 and PLP appeared broken, resulting in the formation of PMP owing to the excess of the donor substrate used during co-crystallization. Structural comparison with the free PSAT enzyme and the PSAR-PSER complex showed that the aromatic ring of the co-factor remains in almost the same place in all structures. A flexible nearby loop in the active site was found in the same position as in the free PSAT structure while in the PSAT-PSER structure it moves inwards to interact with PSER. B-factors comparison in all three structures (PSAT-PMP complex, free PSAT, and PSAT-PSER complex) showed elevated loop flexibility in the absence of the substrate, indicating that loop flexibility plays an important role during substrate binding. The reported structure provides mechanistic details into the reaction mechanism of PSAT and may help in understanding better the role of various parts in the structure towards the design of novel compounds as potential disruptors of PSAT function. This may lead to the development of new drugs which could target the human and bacterial PSAT active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The motivation for this paper stems from the steady decline in the share of consumer expenditures on goods produced in the global south, coupled with the (empirically ambiguous) Singer/Prebisch hypothesis that this can be explained by a secular decline in the southern terms of trade. Drawing on these sources of inspiration, the paper sets out to study the dynamics of the terms of trade using a multi-sector growth model based on the principle of cumulative causation. The upshot is a North-South model of growth and trade in which the evolution of the terms of trade depends on differential rates of productivity growth in different sectors of the economy - and in which terms of trade dynamics may not be the best guide as to whether or not there is an uneven development problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction on the Aquatic Centre progresses and concrete walls go up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rocks correlated with the Hough Lake and Quirke Lake Groups of the Huronian Supergroup form part of a northeasterly trending corridor that separates 1750 Ma granitic intrusive rocks of the Chief Lake batholith from the 1850 Ma mafic intrusive rocks of the Sudbury Igneous Complex. This corridor is dissected by two major structural features; the Murray Fault Zone (MFZ) and the Long Lake Fault (LLF). Detailed structural mapping and microstructural analysis indicates that the LLF, which has juxtaposed Huronian rocks of different deformation style and metamorphism grade, was a more significant plane of dislocation than the MFZ. The sense of displacement along the LLF is high angle reverse in which rocks to the southeast have been raised relative to those in the northwest. South of the LLF Huronian rocks underwent ductile defonnation at amphibolite facies conditions. The strain was constrictional, defined by a triaxial strain ellipsoid in which X > Y > z. Calculations of a regional k value were approximately 1.3. Penetrative ductile defonnation resulted in the development of a preferred crystallographic orientation in quartz as well as the elongation of quartz grains to fonn a regional southeast-northwest trending, subvertical lineation. Similar lithologies north of the LLF underwent dominantly brittle deformation under greenschist facies conditions. Deformation north of the LLF is characterized by the thrusting of structural blocks to form angular discordances in bedding orientation which were previously interpreted as folds. Ductile deformation occurred between 1750 and 1238 Ma and is correlated with a regional period of south over north reverse faulting that effected much of the southern Sudbury region. Post dating the reverse faulting event was a period of sedimentation as a conglomerate unit was deposited on vertically bedded Huronian rocks. Rocks in the study area were intruded by both mafic and felsic dykes. The 1238 Ma mafic dykes appear to have been offset during a period of dextral strike slip displacement along the major fault'). Indirect evidence indicates that this event occurred after the thrusting at 950 to 1100 Ma associated with the Grenvillian Orogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures related to ductile siMple shear parallel to the Bankf ield-Tonbill Fault, define a 5km wide zone, the Barton Bay Deformation Zone. Structures present within this zone Include; simple shear fabrics S, C and C , asymmetric Z shaped folds with rotated axes, boudinage and pinch and swell structures and a subhorlzontal extension llneation. The most highly deformed rock is a gabbro mylonite which occurs in the fault zone. The deformation of this gabbro has been traced in stages from a protomylonite to an ultramylonite In which feldspar and chlorite grainslze has been reduced from over 100 microns to as little as 5 microns. Evidence from the mylonite and the surrounding structure indicates that deformation within the Barton Bay Deformation Zone is related to a regional simple shear zone, the Bankf ield-Tombill Fault. Movement along this shear zone was in a south over north oblique strike slip fashion with a dextral sense of displacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paint Lake Deformation Zone (PLDZ), located within the Superior Province of Canada, demarcates a major structural and lithological break between the Onaman-Tashota Terrane to the north and the Beardmore-Geraldton Belt to the south. The PLDZ is an east-west trending lineament, approximately 50 km in length and up to 1 km in width, comprised of an early ductile component termed the Paint Lake Shear Zone and a late brittle component known as the Paint Lake Fault. Structures associated with PLDZ development including S-, C- and C'-fabrics, stretching lineations, slickensides, C-C' intersection lineations, Z-folds and kinkbands indicate that simple shear deformation dominated during a NW-SE compressional event. Movement along the PLDZ was in a dextral sense consisting of an early differential motion with southside- down and a later strike-slip motion. Although the locus of the PLDZ may in part be lithologically controlled, mylonitization which accompanied shear zone development is not dependent on the lithological type. Conglomerate, intermediate and mafic volcanic units exhibit similar mesoscopic and microscopic structures where transected by the PLDZ. Field mapping, supported by thin section analysis, defines five strain domains increasing in intensity of deformation from shear zone boundary to centre. A change in the dominant microstructural deformation mechanism from dislocation creep to diffusion creep is observed with increasing strain during mylonitization. C'-fabric development is temporally associated with this change. A decrease in the angular relationship between C- and C'-fabrics is observed upon attaining maximum strain intensity. Strain profiling of the PLDZ demonstrates the presence of an outer primary strain gradient which exhibits a simple profile and an inner secondary strain gradient which exhibits a more complex profile. Regionally metamorphosed lithologies of lower greenschist facies outside the PLDZ were subjected to retrograde metamorphism during deformation within the PLDZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that structural studies with model membranes are of considerable value in understanding the structure of biological membranes. Many studies with models of pure phospholipids have been done; but the effects of divalent cations and protein on these models would make these studies more applicable to intact membrane. The present study, performed with above view, is a structural analysis of divalent io~cardio1ipin complexes using the technique of x-ray diffraction. Cardiolipin, precipitated from dilute solution by divalent ionscalcium, magnesium and barium, contains little water and the structure formed is similar to the structure of pure cardiolipin with low water content. The calcium-cardiolipin complex forms a pure hexagonal type II phase that exists from 40 to 400 C. The molar ratio of calcium and cardiolipin in the complex is 1 : 1. Cardiolipin, precipitated with magnesium and barium forms two co-existing phases, lamellar and hexagonal, the relative quantity of the two phases being dependent on temperature. The hexagonal phase type II consisting of water filled channels formed by adding calcium to cardiolipin may have a remarkable permeability property in intact membrane. Pure cardiolipin and insulin at pH 3.0 and 4.0 precipitate but form no organised structure. Lecithin/cardiolipin and insulin precipitated at pH 3.0 give a pure lamellar phase. As the lecithin/cardiolipin molar ratio changes from 93/7 to SO/50, (a) the repeat distance of the lamellar changes from 72.8 X to 68.2 A; (b) the amount of protein bound increases in such a way that cardiolipin/insulin molar ratio in the complex reaches a maximum constant value at lecithin/cardiolipin molar ratio 70/30. A structural model based on these data shows that the molecular arrangement of lipid and protein is a lipid bilayer coated with protein molecules. The lipid-protein interaction is chiefly electrostatic and little, if any, hydrophobic bonding occurs in this particular system. So, the proposed model is essentially the same as Davson-Daniellifs model of biological membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Horwood Peninsula - Gander Bay area is located at NE Newfoundland in the Botwood Zone (Williams et a1., 1974) or in the Dunnage Zone (Williams, 1979) of the Central Mobile Belt of the Newfoundland Appalachians. The area is underlain by Middle Ordovician to possible Lower Silurian rocks of the Davidsville and Indian Islands Groups, respectively. Three conformable formations named informally : the Mafic Volcanic Formation, the Greywacke and Siltstone Formation and the Black Slate Formation, have been recognized in the Davidsville Group. The Greywacke and the Black Slate Formations pass locally into a Melange Formation. From consideration of regional structure and abundant locally-derived mafic volcanic olisto- 1iths in the melange, it is considered to have originated by gravity sliding rather than thrusting. Four formations have been recognized in the Indian Islands Group. They mainly contain silty slate and phyllite, grey cherty siltstone, green to red micaceous siltstone and limestone horizons. Repetition of lithological units by F1 folding are well-demonstrated in one of formations in this Group. The major structure in this Group on the Horwood Peninsula is interpreted to be a synclinal complex. The lithology of this Group is different from the Botwood Group to the west and is probably Late Ordovician and/or Early Silurian in age. The effects of soft-sediment deformation can be seen from the lower part of the Davidsville Group to the middle part of the Indian Islands Group indicating continuous and/or episodic slumping and sliding activities throughout the whole area. However, no siginificant depOSitional and tectonic break that could be assigned to the Taconian Orogeny has been recognized in this study. Three periods of tectonic deformation were produced by the Acadian Orogeny. Double boudinage in thin dikes indicates a southeast-northwest sub-horizontal compression and main northeast-southwest sub-horizontal extension during the D1 deformation. A penetrative, axial planar slaty cleavage (Sl) and tight to isocJ.ina1 F1 folds are products of this deformation. The D2 and D3 deformations formed S2 and S3 fabrics associated with crenulations and kink bands which are well-shown in the slates and phyllites of the Indian Islands Group. The D2 and D3 deformations are the products of vertical and northeast-southwest horizontal shortening respectively. The inferred fault between the Ordovician slates (Davidsville Group) and the siltstones (Indian Islands Group) suggested by Williams (1963, 1964b, 1972, 1978) is absent. Formations can be followed without displacement across this inferred fault. Chemically, the pillow lavas, mafic agglomerates, tuff beds and diabase dikes are subdivided into three rock suites : (a) basaltic komatiite (Beaver Cove Assemblage), (b) tholeiitic basalt (diabase dikes), (c) alkaline basalt (Shoal Bay Assemblage). The high Ti02 , MgO, Ni contents and bimodal characteristic of the basaltic komatiite in the area are comparable to the Svartenhuk Peninsula at Baffin Bay and are interpreted to be the result of an abortive volcano-tectonic rift-zone in a rear-arc basin. Modal and chemical analyses of greywackes and siltstones show the trend of maturity of these rocks increasing from poorly sorted Ordovician greywackes to fairly well-sorted Silurian siltstones. Rock fragments in greywackes indicate source areas consisting of plagiogranite, low grade metamorphic rocks and ultramafic rocks. Rare sedimentary structures in both Groups indicate a southeasterly provenance. Trace element analyses of greywackes also reveal a possible island-arc affinity.