866 resultados para stress effects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and yellowness diminished as ambient temperature increased, whereas cooking loss was linearly elevated with ambient temperature. Meat color traits revealed paler meat in the purebreds, but no differences in instrumental texture properties and water-holding capacity between genetic groups. Purebred rabbits were less susceptible to heat stress than the crossbreds. Heat stress resulted in lower slaughter and carcass weights and proportional reductions of organ weights, which contributed to a higher carcass yield. Moreover, it exerted a small, but negative, effect on meat quality traits. © 2012 The Animal Consortium.
Resumo:
Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.
Resumo:
Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125-2 mg/mL), taurine (1-16 mg/mL), and guarana (3.125-50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5-50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or antioxidative stress), could be a cause of in vitro toxicity induced by these drugs. © 2013 Fares Zeidán-Chuliá et al.
Resumo:
The aim of the present study was to investigate the role of the lateral hypothalamus (LH) and its local glutamatergic neurotransmission in the cardiovascular adjustments observed when rats are submitted to acute restraint stress. Bilateral microinjection of the nonspecific synaptic inhibitor CoCl2 (0.1 nmol in 100 nL) into the LH enhanced the heart rate (HR) increase evoked by restraint stress without affecting the blood pressure increase. Local microinjection of the selective N-methyl-d-aspartate (NMDA) glutamate receptor antagonist LY235959 (2 nmol in 100 nL) into the LH caused effects that were similar to those of CoCl2. No changes were observed in the restraint-related cardiovascular response after a local microinjection of the selective non-NMDA glutamatergic receptor antagonist NBQX (2 nmol in 100 nL) into the LH. Intravenous administration of the muscarinic cholinergic receptor antagonist homatropine methyl bromide (0.2 mg/kg), a quaternary ammonium drug that does not cross the blood-brain barrier, abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. In summary, our findings show that the LH plays an inhibitory role on the HR increase evoked by restraint stress. Present results also indicate that local NMDA glutamate receptors, through facilitation of cardiac parasympathetic activity, mediate the LH inhibitory influence on the cardiac response to acute restraint stress. The bilateral microinjection of the CoCl2 or LY235959 into the LH enhanced the HR increase evoked by restraint stress without affecting the blood pressure increase. Intravenous administration of the homatropine methyl bromide abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. These results suggest that such LH influence is mediated by local NMDA glutamate receptors and involves parasympathetic nervous activation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
Naringenin and quercetin are considered antioxidant compounds with promising activity against oxidative damage in human cells. However, no reports have described their effects on reactive oxygen species (ROS) production by phagocytes during microbicidal activity. Thus, the present study evaluated the effects of naringenin and quercetin on ROS production, specifically hypochlorous acid (HOCl), and their involvement in the microbicidal activity of neutrophils. Naringenin and quercetin inhibited HOCl production through different systems, but this inhibition was more pronounced for quercetin, even in the cell-free systems. With regard to the microbicidal activity of neutrophils, both naringenin and quercetin completely inhibited the killing of Staphylococcus aureus. Altogether, these data indicate that the decrease in the oxidant activity of neutrophils induced by these compounds directly impaired the microbicidal activity of neutrophils. Naringenin and quercetin exerted their effects by controlling the effector mechanisms of ROS production, with both positive and negative effects of these antioxidant agents in oxidative stress conditions and on ROS in the microbicidal activity of phagocytes. The present results challenge the traditional view of antioxidants as improvers of pathological conditions. © 2013 Francielli de Cássia Yukari Nishimura et al.
Resumo:
While researchers have extensively evaluated the beneficial effects of coffee consumption in reducing the frequency of certain diseases, studies examining the differences between organic and conventional coffee intake are still needed. Therefore, this paper aims to investigate the functional effects of organic and conventional coffee by examining both its chemical composition and its mutagenic/antimutagenic properties. Infusions of 10% or 20% (w/v) of organic and conventional coffee were administered by gavage (10 mL/kg b.w., once or twice a day) to male Swiss mice against doxorubicin (DXR) and 1,2-dimethylhydrazine dihydrochloride (DMH)-induced mutagenicity. The levels of chlorogenic acids, caffeine and trigonelline from the coffee infusions and oxidative stress analysis from the liver were measured by HPLC. Gut and bone marrow micronucleus assays were used as mutagenic/antimutagenic endpoints, as well as the crypt measurements and gut apoptosis index. The in vivo tests revealed that only organic coffee exerted protective effects, despite oxidative stress analysis and crypt measurements not showing differences among treatments. Intriguingly, the low dose (10% w/v mL/kg) displayed a robust protective effect that showed a significant reduction in bone marrow micronuclei (26.8%), gut micronuclei (11.5%) and apoptosis (27.8%), whereas the higher coffee dose (2 × 20% w/v) only showed a protective effect against bone marrow micronucleus (43.7%). These results highlight that organic coffee could be considered to have beneficial functional effects, although it is still a challenge to define conclusions from analytical data and all the possible interactions from this complex food matrix. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Systemic administration of cannabidiol (CBD) is able to attenuate cardiovascular responses to acute restraint stress through activation of 5-HT1A receptors. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) is involved in the antiaversive effects of the CBD. Moreover, it has been proposed that synapses within the BNST influence restraint-evoked cardiovascular changes, in particular by an inhibitory influence on the tachycardiac response associated to restraint stress. Thus, the present work investigated the effects of CBD injected into the BNST on cardiovascular changes induced by acute restraint stress and if these effects would involve the local activation of 5-HT1A receptors. The exposition to restraint stress increased both blood pressure and heart rate (HR). The microinjection of CBD (30 and 60nmol) into the BNST enhanced the restraint-evoked HR increase, in a dose-dependent manner, without affecting the pressor response. The selective 5-HT1A receptor antagonist WAY100635 by itself did not change the cardiovascular responses to restraint stress, but blocked the effects of CBD. These results showed that CBD microinjected into the BNST enhanced the HR increase associated with acute restraint stress without affecting the blood pressure response. Although these results are not in agreement with those observed after systemic administration of CBD, they are similar to effects observed after reversible inactivation of the BNST. Moreover, similar to the effects observed after systemic administration, CBD effects in the BNST seem to depend on activation of 5-HT1A receptors. © 2012 Elsevier B.V. and ECNP.
Resumo:
Ractopamine is a β-adrenergic agonist used as an energy repartitioning agent in the diets of finishing pigs. Most ractopamine studies are limited to evaluations of growth performance and meat quality, and there is little information on the effects of this additive on the behavior and welfare of pigs. Therefore, the objective of this study was to evaluate various indicators of stress caused by feeding diets containing ractopamine. One hundred seventy barrows and 170 gilts weighing 107.3 kg were allocated to 30 pens with 10 to 12 barrows or gilts per pen. Pigs were offered 1 of the 3 dietary treatments (0, 5, or 10 mg ractopamine/kg) for 28 d with 5 barrow pens and 5 gilt pens per treatment. Pigs were evaluated for behavior 3 d per week 1 wk before the initiation of the experiment and throughout the experiment. Each pig was classified into 1 of the 13 activities (drinking water, lying alone, lying in clusters, standing, nosing pig, sitting, feeding, biting pig, walking, exploring, running away, playing, and mounting pen mates) and also grouped into 1 of the 3 categories (calm, moving, and feeding themselves) based on those activities. At the end of the experiment, 3 pigs from each pen were slaughtered, and blood samples were collected during exsanguination to determine physiological indicators of stress (cortisol, lactate, and creatine-kinase enzymes). The incidence of skin and carcass lesions was determined at shoulder, loin, and ham. Ractopamine had no effect (P > 0.05) on pig behavior, total number of skin and carcass lesions, or blood concentrations of cortisol or lactate. However, there was an increase (P < 0.05) of creatine kinase concentrations in pigs receiving ractopaminesupplemented feed. This finding is consistent with the concept that ractopamine may cause muscular disorders, and this warrants further investigation. © 2013 American Society of Animal Science. All rights reserved.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BackgroundConditioned place preference (CPP) to ethanol (EtOH) is an important addiction-related alteration thought to be mediated by changed neurotransmission in the mesocorticolimbic brain pathway. Stress is a factor of major importance for the initiation, maintenance, and reinstatement of drug abuse and modulates the neurochemical outcomes of drugs. Thus, the aim of this study was to investigate the effects of concomitant exposure to chronic EtOH and stress on CPP to this drug and alterations of dopaminergic and serotonergic neurotransmission in mice.MethodsMale Swiss mice were chronically treated with EtOH via a liquid diet and were exposed to forced swimming stress. After treatment, animals were evaluated for conditioning, extinction, and reinstatement of CPP to EtOH. Also, mice exposed to the same treatment protocol had their prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala dissected for the quantitation of dopamine, serotonin, and their metabolites content.ResultsData showed that previous chronic exposure to EtOH potentiated EtOH conditioning and increased dopaminergic turnover in PFC. Exposure to stress potentiated EtOH conditioning and decreased dopaminergic turnover in the NAc. However, animals exposed to both chronic EtOH and stress did not display alterations of CPP and showed an elevated content of dopamine in amygdala. No treatment yielded serotonergic changes.ConclusionsThe present study indicates that previous EtOH consumption as well as stress exposure induces increased EtOH conditioning, which can be related to dopaminergic alterations in the PFC or NAc. Interestingly, concomitant exposure to both stimuli abolished each other's effect on conditioning and PFC or NAc alterations. This protective outcome can be related to the dopaminergic increase in the amygdala.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)