846 resultados para stress and policing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter focuses on relationships between plastic deformation structures and mechanical properties in metals and alloys deforming by dislocation glide. We start by summarizing plastic deformation processes, then look at the fundamental mechanisms of plastic deformation and explore how deformation structures evolve. We then turn to experimental techniques for characterization which have allowed deformation microstructures to be quantified in terms of common structural parameters. The microstructural evolution has been described over many length scales and analyzed theoretically based on general principles. The deformation microstructures are related to work hardening stages. Finally we identify correlations between a wide range of microstructural features and mechanical properties, particularly flow stress, and use experimental observations to illustrate their inter-relationships.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The creep rate of polycrystalline Fe3O4 has been measured as a fonction of stress and oxygen partial pressure in the temperature range 480-1100°C. A regime of power law creep is found at high stress, with a stress exponent of ≈- 3.1 and an activation energy of 264 kJ/mol. A regime of diffusional flow is found at lower stresses and is interpreted as Nabarro-Herring creep. The data for the two regimes are combined to deduce an oxygen diffusion coefficient of ≈-10-5 exp(-264 kJ/mol/RT) m2s-1, with oxygen vacancies suggested as the mobile species. © 1990.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L-1) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L-1 HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L-1 HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L-1 HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both organic pollution and eutrophication are prominent environmental issues concerning water pollution in the world. It is important to reveal the effects of organic pollutants on algal growth and toxin production for assessing ecological risk of organic pollution. Since nonylphenol (NP) is a kind of persistent organic pollutant with endocrine disruptive effect which exists ubiquitously in environments, NP was selected as test compound in our study to study the relationship between NP stress and Microcystis growth and microcystin production. Our study showed that responses of toxic and nontoxic Microcystis aeruginosa to NP stress were obviously different. The growth inhibition test with NP on M. aeruginosa yielded effect concentrations EbC50 values within this range of 0.67-2.96 mg/L. The nontoxic M. aeruginosa strains were more resistant to NP than toxic strains at concentration above 1 mg/L. Cell growth was enhanced by 0.02-0.2 mg/L NP for both toxic and nontoxic strains, suggesting a hormesis effect of NP on M. aeruginosa. Both toxic and nontoxic strains tended to be smaller with increasing NP. But with the increased duration of the experiment, both the cell size and the growth rate began to resume, suggesting a quick adaptation of M. aeruginosa to adverse stress. NP of 0.05-0.5 mg/L significantly promoted microcystin production of toxic strain PCC7820, suggesting that NP might affect microcystin production of some toxic M. aeruginosa in the field. Our study showed that microcystin excretion was species specific that up to 75% of microcystins in PCC7820 were released into solution, whereas > 99% of microcystins in 562 remained in algal cells after 12 days' incubation. NP also significantly influenced microcystin release into cultural media. The fact that NP enhanced growth and toxin production of M. aeruginosa at low concentrations of 0.02-0.5 mg/L that might be possibly found in natural freshwaters implies that low concentration of NP may favor survival of M. aeruginosa in the field and may play a subtle role in affecting cyanobacterial blooms and microcystin production in natural waters. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ferroelectricity of rhombohedral PbTiO3 under uniaxial compression is investigated from first-principles study. Upon compression, the ferroelectricity decreases until a critical stress of -29 GPa and then increases with a further increase of the magnitude of the uniaxial compressive stress. We also find that uniaxial compression could enhance piezoelectricity and that the maximum piezoelectric coefficient d(33) occurs at sigma(33)=-49 GPa, which supports the experimentally observed piezoelectric behavior in rhombohedral Pb(Mg1/3Nb2/3O3)-0.32PbTiO(3) [Q. Wan, C. Chen, and Y. P. Shen, J. Appl. Phys. 98, 024103 (2005)]. Our calculated results show that the Pb, Ti, and O atoms have different contributions to the total polarization with increasing the magnitude of uniaxial compressive stress, and that when -sigma(33)>55 GPa, the Ti atoms no longer have contributions to the polarization, which leads to the changes of ferroelectricity and piezoelectricity. (C) 2008 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycrystalline silicon (polysilicon) has been used as an important structural material for microelectro-mechnical systems (MEMS) because of its compatibility with standard integrated circuit (IC) processes. As the structural layer of micromechanical high resonance frequency (high-f) and high quality factor (high-Q) disk resonators, the low residual stress and low resistivity are desired for the polysilicon thin films. In the present work, we investigate the effect of deposition and annealing conditions on the residual stress and resistivity for in-situ deposited low pressure chemical vapor deposition (LPCVD) polysilicon films. Low residual stress (-100 MPa) was achieved in in-situ boron-doped polysilicon films deposited at 570 degrees C and annealed at 1000 degrees C for 4 hr. The as-deposited amorphous polysilicon films were crystallized by the rapid thermal annealing and have the (111)-preferred orientation, the low tensile residual stress is expected for this annealed film, the detailed description on this work will be reported soon. The controllable residual stress and resistivity make these films suitable for high-Q and bigh-f micro-mechanical disk resonators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finite Element Method is used in this article to analyze the stress of CR superferric magnet. Magnetic force and the stress caused by this force are calculated. The thermal stress and strain of the coil caused by cooling down is also analyzed. The result will be taken as a check for the design of the coil and coilcase, and also as a reference for the optimization of further design and quench protection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The superconducting magnet of the LPT (Lanzhou Penning trap) consists of nine coaxial coils. The maximum magnetic field is 7 T and thus results in a large magnetic force. In order to assure the mechanical stability, it is necessary to do the stress analysis of the magnet system. The 3D Finite Element Analysis of thermal and mechanical behavior was presented in this paper. For the numerical simulation and analysis of the phenomena inside the structure, the ADINA and TOSCA code were chosen right from start. The ADINA code is commonly used for numerical simulations of the structure analysis [1] and the TOSCA code is professional software to calculate the magnetic field and Lorentz Forces. The results of the analysis were evaluated in terms of the stress and deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gly-Gly-His tripeptide modified microcantilever was developed by carbodiimide attachment of the Gly-Gly-His tripeptide onto a 3-mercaptopropionic acid(MPA) modified gold surface. The interaction of peptide with Cu2+ ion was studied. At a relative high concentration of Cu2+, the cantilever bent toward the gold side initially as the N atom of imidazole ring and carboxyl group in different peptide coordinate with Cu2+, which results in a tensile surface stress. And then the reversed deflection of microcantilever was observed, which implies that the peptide-Cu2+ complex are formed with conformation transition. In another case, i.e., at a relative low concentration Of Cu2+, only the process of conformation transition was observed due to the coordination mode can not be formed initially. The influences of pH and salt concentration of the test solution on the performance of the sensor were studied. The results show that the maximum deflection was obtained at pH 7 and the bonding Of Cu2+ to the Gly-Gly-His tripeptide was inhibited due to the formation Of CuClx2-x.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metallothionein (MT) is a superfamily of cysteine-rich proteins contributing to metal metabolism, detoxification of heavy metals, and immune response such as protecting against ionizing radiation and antioxidant defense. A metallothionein (designated AiMT2) gene was identified and cloned from bay scallop, Argopecten irradians. The full length cDNA of AiMT2 consisted of an open reading frame (ORF) of 333 bp encoding a protein of 110 amino acids. with nine characteristic Cys-X-Cys, five Cys-X-X-Cys, five Cys-X-X-X-Cys and two Cys-Cys motif arrangements and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-x(3)Cys-x-Cys-x(3)-Cys-x-Cys-Arg at the C-terminus. The cloned ANT showed about 50% identity in the deduced amino acid sequence with previously published MT sequences of mussels and oysters. The conserved structural pattern and the close phylogenetic relationship of AiMT2 shared with MTs from other mollusc especially bivalves indicated that AiMT2 was a new member of molluscan MT family. The mRNA transcripts in hemolymph of AiMT2 under cadmium (Cd) exposure and bacteria challenge were examined by real-time RT-PCR. The mRNA expression of AiMT2 was up-regulated to 3.99-fold at 2 h after Listonella anguillarum challenge, and increased drastically to 66.12-fold and 126.96-fold at 16 and 32 h post-challenge respectively. Cadmium ion exposure could induce the expression of AiMT2, and the expression level increased 2.56-fold and 6.91-fold in hemolymph respectively after a 10-day exposure of 100 mu g L-1 and 200 mu g L-1 CdCl2. The sensitivity of AiMT2 to bacteria challenge and cadmium stress indicated it was a new Cd-dependent MT in bay scallop and also regulated by an immune challenge. The changes in the expression of AiMT2 could be used as an indicator of exposure to metals in pollution monitoring programs and oxidative stress, and bay scallop as a potential sentinel organism for the cadmium contamination in aquatic environment. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north-eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26-36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant-plant interactions. Heat stress and warming-induced litter accumulation are potential explanations for the species' responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.