983 resultados para sovereign international bonds
Resumo:
A software and a microprocessor based hardware for waveform synthesis using Walsh functions are described. The software is based on Walsh function generation using Hadamard matrices and on the truncated Walsh series expansion for the waveform to be synthesized. The hardware employs six microprocessor controlled programmable Walsh function generators (PWFGs) for generating the first six non-vanishing terms of the truncated Walsh series. Improved approximation to a given waveform may be achieved by employing additional PWFGs.
Resumo:
The validity of various qualitative proposals for interpreting and predicting the existence of short contacts between formally non-bonded atoms, as in cyclodisiloxane and related inorganic ring systems, is critically evaluated. The models range from simple considerations of geometric constraints, lone pair repulsions and pi-complex formation to proposals such as the unsupported pi-bond model and the sigma-bridged-pi bond concept. It is pointed out that a unified description based on a combination of closed and open 3-centre 2-electron bonds is possible. The role of hybridisation is emphasized in the short phantom bond computed in an earlier model system. These insights are used to predict structures with exceptionally short Si..Si and B..B phantom bonds. The proposals are confirmed by ab initio calculations.
Resumo:
The title compound, 9,10-dihydro-8,8-dimethyl-2-oxo-2H,8H-benzo[1,2-b:3,4-b']dipyran-9,10-diyl 2-methyl-2-butenoate, C24H26O7, contains a highly planar coumarin nucleus and a substituted dihydropyran ring (C), which has a distorted half-chair conformation, with an 8 alpha,9 beta orientation. The conformation of ring C is further supported by the two angelyloxy (2-methyl-2-butenoyloxy) substituents at positions C9 and C10, which are cis oriented and thus cannot both occupy equatorial positions with respect to the plane of ring C. The conformations of the two angelyloxy substituents are different, as indicated by their endocyclic torsion angles. The most striking of these angles are O1'-C2'-C4'=C6' and O1'-C2'-C4'-C5' [-137.7 (5) and 43.7 (5)degrees, respectively, in the chain at C10 and 155.8 (5) and -24.7 (9)degrees, respectively in the chain at C9]. These variations are due to two intramolecular hydrogen bonds, namely, C16-H161 ... O1' [C16 ... O1' 3.056 (7) Angstrom] and C7''-H7Y ... O3'' [C7'' ... O3'' 2.955 (12) Angstrom]. The methyl substituents, C15 and C16, at position C8 are alpha and beta oriented, respectively. The crystal structure is stabilized by a weak C4-H41 ... O3' hydrogen bond [C4 ... O3' 3.297 (6) Angstrom] between the screw-related molecules.
Resumo:
In the title compound, C28H21O4P, the eight-membered heterocyclic dioxaphosphocine ring has a distorted boat conformation, with the phosphoryl O atom axial and the phenoxy group equatorial. The P=O distance is 1.451 (1) Angstrom and the average length of the three P-O bonds is 1.573 (1) Angstrom. The phenyl ring is nearly perpendicular to both naphthalene planes, making dihedral angles of 91.30 (3) and 97.65 (5)degrees with them. The angle between the two naphthalene planes is 67.73 (3)degrees. The crystal structure is stabilized by van der Waals interactions.
Resumo:
C10H10O4, M(r) = 194.19, monoclinic, P2(1)/c, a = 7.089 (1), b = 11.361 (1), c = 11.656 (1) angstrom, beta = 100.45 (3)-degrees, V = 922.92 (1) angstrom 3, Z = 4, D(m) = 1.410 (5), D(x) = 1.397 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu(Cu K-alpha) = 0.89 mm-1, T = 300 K, F(000) = 408, final R = 0.057 for 1701 observed reflections. The molecule is almost planar, with O(9) and O(12) of the acetyl groups deviating by 0.074 (1) and 0.071 (2) angstrom from the mean plane of the benzene ring. The bond lengths and bond angles of the benzene ring are normal. There are intramolecular hydrogen bonds between O(9) and H(14) and between O(12) and H(13); there are no intermolecular hydrogen bonds. The molecules are packed in layers parallel to the ac plane and are held together essentially by van der Waals interactions.
Resumo:
C13H12F3NO2, M(r) = 271.2, triclinic, P1BAR, a = 5.029 (2), b = 7.479 (2), c = 17.073 (5) angstrom, alpha = 97.98 (2), beta = 95.54 (3), gamma = 103.62 (3)-degrees, V = 612.4 (4) angstrom 3, Z = 2, D(m) = 1.463, D(x) = 1.471 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 1.23 cm-1, F(000) = 280, T = 298 K, final R value is 0.041 for 2047 observed reflections with \F(omicron)\ greater-than-or-equal-to 6-sigma(\F(omicron)\). The N-C(sp2) bond length is 1.356 (2) angstrom. The N and C atoms of the ethylamino group deviate by < 0.15 angstrom from the plane of the aromatic ring. Short intramolecular contacts, C(3)...F(17) 2.668 (3) angstrom [H(3)...F(17) 2.39 (2) angstrom, C(3)-H(C3)...F(17) 98 (1)-degrees], C(5)...F(18) 3.074 (3) and C(5)...F(19) 3.077 (3) angstrom exist in the structure. The crystal structure is stabilized by intermolecular N-H...O hydrogen bonds with N(12)-H(N12) 0.79 (3), H(N12)...O(11)' 2.36 (3), N(12)...O(11)' (x - 1, y + 1, z) 3.105 (3) angstrom and N(12)-H(N12)...O(11)' 155 (2)-degrees.
Resumo:
[Fe(N2H5)2(H2O)2Cl2].Cl2, M(r) = 299.65, monoclinic, P2(1)/c, a = 8.027 (1), b = 5.725 (2), c = 11.430 (2) angstrom, beta = 97.08 (1)-degrees, V = 521.3 (2) angstrom 3, Z = 2, D(m) = 1.92, D(x) = 1.910 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 24.5 cm-1, F(000) = 304, T = 295 K, final R = 0.0242 and wR = 0.0292 for 1411 significant [F(o) > 5.0-sigma(F(o))] reflections. The crystal contains discrete Cl- ions and complex [Fe(N2H5)2(H2O)2Cl2]2+ cations. In the complex cation, the Fe atom is bonded to two hydrazinium cations, two Cl atoms and two water molecules. The coordinated atoms are trans to each other. The ions are connected by both N-H...Cl and O-H...Cl type hydrogen bonds.
Resumo:
C18H17NO3, M r = 295"34, monoclinic, C2/c, a = 11.689 (2), b = 22.934 (4), c = 11.592 (2) A, fl=100.16(3) ° , V =3058.8(8) A 3, Z=8, D,n= 1.30 (5), Dx = 1.28 Mg m -3, A(Mo Ka) = 0.7107 A, tz(Mo Ka) = 0.094 mm- 1, F(000) = 1248, T = 300 K, final R = 0.046 for 1849 observed reflections [I > 30"(/)]. The indole nucleus is slightly bent along the C(8)---C(9) bond. The phenyl ring connected to the indole moiety is rotated about the C(3)---C(10) bond by 45.8 (3) °. The carboxyl group makes a dihedral angle of 8.1 (4) ° with the mean plane of the indole moiety. Centrosymmetrically related pairs of molecules are linked through hydrogen bonds across the centre of symmetry and form dimers.
Resumo:
C17H17N3O2, M(r) = 295.34, orthorhombic, P2(1)2(1)2(1), a = 7.659 (1), b = 12.741 (1), c = 15.095 (1) angstrom, V = 1473.19 (2) angstrom 3, Z = 4, D(m) = 1.33, D(x) = 1.32 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu = 0.68 mm-1, F(000) = 624, T = 295 K, R = 0.031 for 1549 unique observed reflections with I > 2.5-sigma(I). The seven-membered heterocyclic ring adopts a boat conformation flattened at the nitroso end of the ring. The substituent phenyl rings occupy pseudo-axial positions and the nitroso group is coplanar with the C(2), N(1), C(7) plane of the central ring. The crystal structure is stabilized by intermolecular N-H...O and weak C-H...O hydrogen bonds.
Resumo:
The asymmetric unit of the title compound, (C14H13N2S)(2)CuBr4]center dot 2H(2)O, contains two cations, one anion and two solvent water molecules that are connected via O-H center dot center dot center dot Br, N-H center dot center dot center dot Br and N-H center dot center dot center dot O hydrogen bonds into a two-dimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along 100]. The central Cu-II atom of the anion is in a distorted tetrahedral environment.
Resumo:
The structure of N-3-benzoyl-2',3'-di-O-benzoyluridine, C30H24N2O9, has two molecules in the asymmetric unit. The uracil bases of both the molecules are in the anti conformation with respect to the ribose moiety and the furanosyl rings adopt a C3'-endo conformation. The orientation about the C4'-C5' bond is gauche-gauche. The two crystallographically independent molecules are linked through several C-H ... O hydrogen bonds. The nucleoside molecules pack as columns along the a axis and these columns repeat along the c axis.
Resumo:
The alkoxy species produced by the interaction of alcohols with Zn surfaces undergoes C-O bond scission at 150 K giving hydrocarbon species, but this transformation occurs even at 80 K when alcohol-oxygen mixtures are coadsorbed, due to the oxygen transients.