991 resultados para source-sink interactions
Resumo:
Soil can be either source or sink of methane (CH4), depending on the balance between methanogenesis and methanotrophy, which are determined by pedological, climatic and management factors. The objective of this study was to assess the impact of drainage of a highland Haplic Histosol on CH4 fluxes. Field research was carried out in Ponta Grossa (Paraná, Brazil) based on the measurement of CH4 fluxes by the static chamber method in natural and drained Histosol, over one year (17 sampling events). The natural Histosol showed net CH4 eflux, with rates varying from 238 µg m-2 h-1 CH4, in cool/cold periods, to 2,850 µg m-2 h-1 CH4, in warm/hot periods, resulting a cumulative emission of 116 kg ha-1 yr-1 CH4. In the opposite, the drained Histosol showed net influx of CH4 (-39 to -146 µg m-2 h-1), which resulted in a net consumption of 9 kg ha-1 yr-1 CH4. The main driving factors of CH4 consumption in the drained soil were the lowering of the water-table (on average -57 cm, vs -7 cm in natural soil) and the lower water content in the 0-10 cm layer (average of 5.5 kg kg-1, vs 9.9 kg kg-1 in natural soil). Although waterlogged Histosols of highland areas are regarded as CH4 sources, they fulfill fundamental functions in the ecosystem, such as the accumulation of organic carbon (581 Mg ha-1 C to a depth of 1 m) and water (8.6 million L ha-1 = 860 mm to a depth of 1 m). For this reason, these soils must not be drained as an alternative to mitigate CH4 emission, but effectively preserved.
Resumo:
In the Alps, debris flow deposits generally contain < 5% clay-size particles, and the role of the surface-charged < 2 mu m particles is often neglected, although these particles may have a significant impact on the rheological properties of the interstitial fluid. The objective of this study was to compare debris flow deposits and parent materials from two neighbouring catchments of the Swiss Alps, with special emphasis on the colloidal constituents. The catchments are small in area (4 km(2)), 2.5 km long, similar in morphology, but different in geology. The average slopes are 35-40%. The catchments were monitored for debris flow events and mapped for surface aspect and erosion activity. Debris flow deposits and parent materials were sampled, the clay and silt fractions extracted and the bulk density, < 2 mm fraction bulk density, particle size distribution, chemical composition, cation exchange capacity (CEC) and mineralogy analysed. The results show that the deposits are similar to the parent screes in terms of chemical composition, but differ in terms of: (i) particle size distribution; and (ii) mineralogy, reactivity and density of the < 2 mm fraction. In this fraction, compared with the parent materials the deposits show dense materials enriched in coarse monocrystalline particles, of which the smallest and more reactive particles were leached. The results suggest that deposit samples should not be considered as representative of source or flow materials, particularly with respect to their physical properties.
Resumo:
The formation of coherently strained three-dimensional (3D) islands on top of the wetting layer in the Stranski-Krastanov mode of growth is considered in a model in 1 + 1 dimensions accounting for the anharmonicity and nonconvexity of the real interatomic forces. It is shown that coherent 3D islands can be expected to form in compressed rather than expanded overlayers beyond a critical lattice misfit. In expanded overlayers the classical Stranski-Krastanov growth is expected to occur because the misfit dislocations can become energetically favored at smaller island sizes. The thermodynamic reason for coherent 3D islanding is incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer height islands with a critical size appear as necessary precursors of the 3D islands. This explains the experimentally observed narrow size distribution of the 3D islands. The 2D-3D transformation takes place by consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc., after the corresponding critical sizes have been exceeded. The rearrangements are initiated by nucleation events, each one needing to overcome a lower energetic barrier than the one before. The model is in good qualitative agreement with available experimental observations.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions.
Resumo:
Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.
Resumo:
We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational interactions among bodies to first order in the coupling constants, retaining terms up to order c-2. The Breit and Barker and O'Connell Hamiltonians are recovered by means of a coordinate transformation. The method used throws light on the meaning of these coordinates.
Resumo:
We compute up to and including all the c-2 terms in the dynamical equations for extended bodies interacting through electromagnetic, gravitational, or short-range fields. We show that these equations can be reduced to those of point particles with intrinsic angular momentum assuming spherical symmetry.
Resumo:
We present a new model of sequential adsorption in which the adsorbing particles experience dipolar interactions. We show that in the presence of these long-range interactions, highly ordered structures in the adsorbed layer may be induced at low temperatures. The new phenomenology is manifest through significant variations of the pair correlation function and the jamming limit, with respect to the case of noninteracting particles. Our study could be relevant in understanding the adsorption of magnetic colloidal particles in the presence of a magnetic field.
Resumo:
We have studied the adsorption process of non-Brownian particles on a line. Our work differs from previously proposed models in that we have incorporated hydrodynamic interactions between the incoming particles and the preadsorbed particles as well as the surface. We then numerically analyze the effect of these interactions on quantities related to the adsorption process. Comparing our model to the ballistic deposition model (BM) shows a significant discrepancy in the pair correlation function. These results can explain some differences between recent experiments and BM predictions. Finally, the limitations of the applicability of BM are addressed.
Resumo:
The article reopens the file of sources, parallels and rewritings of 1 Cor 2.9, a saying that Paul attributes to some written source, when others sources put it into Jesus' mouth (e.g. GosThom 17). A state of research highlights that the hypothesis of an oral source is generally preferred but an accurate study of 1 Clem 34.8, a parallel too often neglected, supports the presence of a written source that existed before 1 Cor 2.9. GosJud 47.10-13 will help to understand the attribution of the saying to Jesus. The last important part of this article studies its parallel in Islamic traditions, a ḥadīth qudsī.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
Ethnopedological studies have mainly focused on agricultural land uses and associated practices. Nevertheless, peasant and indigenous populations use soil and land resources for a number of additional purposes, including pottery. In the present study, we describe and analyze folk knowledge related to the use of soils in non-industrial pottery making by peasant potters, in the municipality of Altinho, Pernambuco State, semiarid region at Brazil. Ethnoscientific techniques were used to record local knowledge, with an emphasis on describing the soil materials recognized by the potters, the properties they used to identify those soil materials, and the criteria employed by them to differentiate and relate such materials. The potters recognized three categories of soil materials: “terra” (earth), “barro” (clay) and, “piçarro” (soft rock). The multi-layered arrangement of these materials within the soil profiles was similar to the arrangement of the soil horizon described by formal pedologists. “Barro vermelho” (red clay) was considered by potters as the principal ceramic resource. The potters followed morphological and utilitarian criteria in distinguishing the different soil materials. Soils from all of these sites were sodium-affected Alfisols and correspond to Typic Albaqualf and Typic Natraqualf in the Soil Taxonomy (Soil Survey Staff, 2010).