920 resultados para solitons in Bose-Einstein condensates
Resumo:
We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.
Resumo:
We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.
Resumo:
We present a measurement of the fraction f(+) of right-handed W bosons produced in top quark decays, based on a candidate sample of tt events in the l + jets and dilepton decay channels corresponding to an integrated luminosity of 370 pb(-1) collected by the D0 detector at the Fermilab Tevatron pp Collider at root s = 1.96 TeV. We reconstruct the decay angle theta* for each lepton. By comparing the cos theta* distribution from the data with that for the expected background and signal for various values of f(+) (where we assume that the fraction of longitudinally-polarized W bosons has the standard model value of 0.70), we find f(+) = 0.056 +/- 0.080 (stat) +/- 0.057 (syst) (f(+) < 0.23 at 95% C. L.), consistent with the standard model prediction of f(+) = 3.6 X 10(-4).
Resumo:
We combine the D0 measurement of the width difference between the light and heavy B-s(0) mass eigenstates and of the CP-violating mixing phase determined from the time-dependent angular distributions in the B-s(0)-> J/psi phi decays along with the charge asymmetry in semileptonic decays also measured with the D0 detector. With the additional constraint from the world average of the flavor-specific B-s(0) lifetime, we obtain Delta Gamma(s)equivalent to(Gamma(L)-Gamma(H))=0.13 +/- 0.09 ps(-1) and vertical bar phi(s)vertical bar=0.70(-0.47)(+0.39) or Delta Gamma(s)=-0.13 +/- 0.09 ps(-1) and vertical bar phi(s)vertical bar=2.44(-0.39)(+0.47). The data sample corresponds to an integrated luminosity of 1.1 fb(-1) accumulated with the D0 detector at the Fermilab Tevatron Collider.
Resumo:
lWe report on a search for second generation leptoquarks (LQ(2)) which decay into a muon plus quark in (p) over barp collisions at a center-of-mass energy of root s = 1.96 TeV in the DO detector using an integrated luminosity of about 300 pb(-1). No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction into a quark and a muon was determined for second generation scalar leptoquaiks as a function of the leptoquark mass. This result has been combined with a previously published DO search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, lambda. Assuming lambda = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m(LQ2) > 274 GeV and m(LQ2) > 226 GeV for beta = 1 and beta = 1/2, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A search for direct production of scalar bottom quarks ((b) over bar) is performed with 310 pb(-1) of data collected by the D0 experiment in p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron Collider. The topology analyzed consists of two b jets and an imbalance in transverse momentum due to undetected neutralinos (chi(0)(1)), with chi(0)(1) assumed to be the lightest supersymmetric particle. We find the data consistent with standard model expectations, and set a 95% C.L. exclusion domain in the (m(b), m(chi 1)(0)) mass plane, improving significantly upon the results from run I of the Tevatron.
Resumo:
Adopting the framework of the Jaynes-Cummings model with an external quantum field, we obtain exact analytical expressions of the normally ordered moments for any kind of cavity and driving fields. Such analytical results are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering a specific initial state of the tripartite system, the normally ordered moments are then applied to investigate not only the squeezing effect and the nonlocal correlation measure based on the total variance of a pair of Einstein-Podolsky-Rosen type operators for continuous variable systems, but also the Shchukin-Vogel criterion. This kind of numerical investigation constitutes the first quantitative characterization of the entanglement properties for the driven Jaynes-Cummings model.
Measurement of the top quark mass in the lepton plus jets final state with the matrix element method
Resumo:
We present a measurement of the top quark mass with the matrix element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the matrix element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 0.4 fb(-1) taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: m(top)(center dot+jets)(topo)=169.2(-7.4)(+5.0)(stat+JES)(-1.4)(+1.5)(syst) GeV, and when information about identified b jets is included: m(top)(center dot+jets)(b-tag)=170.3(-4.5)(+4.1)(stat+ JES)(-1.8)(+1.2)(syst) GeV. The measurements yield a jet energy scale consistent with the reference scale.
Resumo:
We investigate an alternative compactification of extra dimensions using local cosmic string in the Brans-Dicke gravity framework. In the context of dynamical systems it is possible to show that there exist a stable field configuration for the Einstein-Brans-Dicke equations. We explore the analogies between this particular model and the Randall-Sundrum scenario.
Resumo:
A measurement of the top quark mass using events with one charged lepton, missing transverse energy, and jets in the final state, collected by the D0 detector from p (p) over bar collisions at root s=1.96 TeV at the Fermilab Tevatron collider, is presented. A constrained fit is used to fully reconstruct the kinematics of the events. For every event a top quark mass likelihood is calculated taking into account all possible jet assignments and the probability that an event is signal or background. Lifetime-based identification of b jets is employed to enhance the separation between t (t) over bar signal and background from other physics processes and to improve the assignment of the observed jets to the quarks in the t (1) over bar hypothesis. We extract a multiplicative jet energy scale (JES) factor in situ, greatly reducing the systematic effect related to the jet energy measurement. In a data sample with an integrated luminosity of 425 pb(-1), we observe 230 candidate events, with an estimated background of 123 events, and measure m(t)=173.7 +/- 4.4(stat+JES)(-2.0)(+2.1)(syst) GeV. This result represents the first application of the ideogram technique to the measurement of the top quark mass in lepton+jets events.
Resumo:
A measurement of the top quark pair production cross section in proton antiproton collisions at an interaction energy of root s=1.96 TeV is presented. This analysis uses 405 +/- 25 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic t (t) over bar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The t (t) over bar cross section is measured as sigma(t (t) over bar)=4.5(-1.9)(+2.0)(stat)(-1.1)(+1.4)(syst)+/- 0.3(lumi) pb for a top quark mass of m(t)=175 GeV/c(2).
Resumo:
We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb(-1) of data collected by the DO experiment during Run R of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the DO Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m(t) = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in p (p) over bar collisions at root s =1.96 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on sigma(p (p) over bar -> LQ (LQ) over bar )B-2 as a function of the leptoquark mass M-LQ. Assuming B=1, we exclude at the 95% confidence level third-generation scalar leptoquarks with M-LQ < 229 GeV.
Resumo:
We have measured the Lambda(b) lifetime using the exclusive decay Lambda(b)-> J/psi Lambda, based on 1.2 fb(-1) of data collected with the D0 detector during 2002-2006. From 171 reconstructed Lambda(b) decays, where the J/psi and Lambda are identified via the decays J/psi ->mu(+)mu(-) and Lambda -> p pi, we measured the Lambda(b) lifetime to be tau(Lambda(b))=1.218(-0.115)(+0.130)(stat)+/- 0.042(syst) ps. We also measured the B-0 lifetime in the decay B-0 -> J/psi(mu(+)mu(-))K-S(0)(pi(+)pi(-)) to be tau(B-0)=1.501(-0.074)(+0.078)(stat)+/- 0.050(syst) ps, yielding a lifetime ratio of tau(Lambda(b))/tau(B-0)=0.811(-0.087)(+0.096)(stat)+/- 0.034(syst).
Resumo:
We describe a search for the Standard Model Higgs boson with a mass of 105 GeV/c(2) to 145 GeV/c(2) in data corresponding to an integrated luminosity of approximately 450 pb(-1) collected with the D phi detector at the Fermilab Tevatron p (p) over bar collider at a center-of-mass energy of 1.96 TeV. The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with the Higgs boson decaying to a b (b) over bar pair. The data are well described by the expected background, leading to 95% confidence level cross section upper limits sigma (p (p) over bar -> ZH) x B(H -> b (b) over bar) in the range of 3.1 pb to 4.4 pb. (C) 2007 Elsevier B.V. All rights reserved.