938 resultados para soil tillage systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resilience research has been applied to socioeconomic as well as for agroecological studies in the last 20 years. It provides a conceptual and methodological approach for a better understanding of interrelations between the performance of ecological and social systems. In the research area Alto Beni, Bolivia, the production of cocoa (Theobroma cacao L.), is one of the main sources of income. Farmers in the region have formed producers’ associations to enhance organic cocoa cultivation and obtain fair prices since the 1980s. In cooperation with the long-term system comparisons by the Research Institute of Organic Agriculture (FiBL) in Alto Beni, aspects of the field trial are applied for the use in on-farm research: a comparison of soil fertility, biomass and crop diversity is combined with qualitative interviews and participatory observation methods. Fieldwork is carried out together with Bolivian students through the Swiss KFPE-programme Echanges Universitaires. For the system comparisons, four different land-use types were classified according to their ecological complexity during a preliminary study in 2009: successional agroforestry systems, simple agroforestry systems (both organically managed and certified), traditional systems and conventional monocultures. The study focuses on interrelations between different ways of cocoa cultivation, livelihoods and the related socio-cultural rationales behind them. In particular this second aspect is innovative as it allows to broaden the biophysical perspective to a more comprehensive evaluation with socio-ecological aspects thereby increasing the relevance of the agronomic field studies for development policy and practice. Moreover, such a socio-ecological baseline allows to assess the potential of organic agriculture regarding resilience-building face to socio-environmental stress factors. Among others, the results of the pre-study illustrate local farmers’ perceptions of climate change and the consequences for the different crop-systems: all interviewees mentioned rising temperatures and/or an extended dry season as negative impacts more with regard to their own working conditions than to their crops. This was the case in particular for conventional monocultures and in plots where slash-and-burn cultivation was practised whereas for organic agroforestry systems the advantage of working in the shade was stressed indicating that their relevance rises in the context of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the significance of ‘life-worlds’ for better understanding why farmers adopt or reject soil conservation measures and for identifying basic dimensions to be covered by social learning processes in Swiss agricultural soil protection. The study showed that farmers interpret soil erosion and soil conservation measures against the background of their entire life-world. By doing so, farmers consider abstract and symbolic meanings of soil conservation. This is, soil conservation measures have to be feasible and practical in the everyday farming routine, however, they also have to correspond with their aesthetic perception, their value system and their personal and professional identities. Consequently, by switching to soil conservation measures such as no-tillage farmers have to adapt not only the routines of their daily farming life, but also their perception of the aesthetics of cultivated land, underlying values and images of themselves. Major differences between farmers who adopt and farmers who reject no-tillage were found to depend on the degree of coherence they could create between the abstract and symbolic meanings of the soil conservation measure. From this perspective, implementation of soil protection measures faces the challenge of facilitating interactions between farmers, experts and scientists at a ‘deeper’ level, with an awareness of all significant dimensions that characterise the life-world. The paper argues that a certain level of shared symbolic meaning is essential to achieving mutual understanding in social learning processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘where the land is greener’ looks at soil and water conservation from a global perspective. In total, 42 soil and water conservation technologies and 28 approaches are described – each fully illustrated with photographs, graphs and line drawings – as applied in case studies in more than 20 countries around the world. This unique presentation of case studies draws on WOCAT’s extensive database, gathered in over 12 years of field experience. The book is intended as a prototype for national and regional compilations of sustainable land management practices a practical – instrument for making field knowledge available to decision makers. Various land use categories are covered, from crop farming to grazing and forestry. The technologies presented range from terrace-building to agroforestry systems; from rehabilitation of common pastures to conservation agriculture; from Vermiculture to water harvesting. Several of these technologies are already well-established successes – others are innovative, relatively unknown, but full of promise. Descriptions of the various technologies are complemented by studies of the ‘approaches’ that have underpinned their development and dissemination. Some of these approaches were developed specifically for individual projects; others developed and spread spontaneously in fascinating processes that offer a new perspective for development policy. In addition to the case studies, the book includes two analytical sections on the technologies and approaches under study. By identifying common elements of success, these analyses offer hope for productive conservation efforts at the local level with simultaneous global environmental benefits. Policy pointers for decision makers and donors offer a new impetus for further investment – to make the land greener.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About one-sixth of the world’s land area, that is, about one-third of the land used for agriculture, has been affected by soil degradation in the historic past. While most of this damage was caused by water and wind erosion, other forms of soil degradation are induced by biological, chemical, and physical processes. Since the 1950s, pressure on agricultural land has increased considerably owing to population growth and agricultural modernization. Small-scale farming is the largest occupation in the world, involving over 2.5 billion people, over 70% of whom live below the poverty line. Soil erosion, along with other environmental threats, particularly affects these farmers by diminishing yields that are primarily used for subsistence. Soil and water conservation measures have been developed and applied on many farms. Local and science-based innovations are available for most agroecological conditions and land management and farming types. Principles and measures developed for small-scale as well as modern agricultural systems have begun to show positive impacts in most regions of the world, particularly in wealthier states and modern systems. Much more emphasis still needs to be given to small-scale farming, which requires external support for investment in sustainable land management technologies as an indispensable and integral component of farm activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the scope of a comprehensive assessment of the degree of soil erosion in Switzerland, common methods have been used in the past including test plot measurements, artificial rainfall simulation, and erosion modelling. In addition, mapping guidelines for all visible erosion features have been developed since the 1970s and are being successfully applied in many research and soil conservation projects. Erosion damage has been continuously mapped over a period of 9 years in a test region in the central Bernese plateau. In 2005, two additional study areas were added. The present paper assesses the data gathered and provides a comparison of the three study areas within a period of one year (from October 2005 to October 2006), focusing on the on-site impacts of soil erosion. During this period, about 11 erosive rainfall events occurred. Average soil loss rates mapped at each study site amounted to 0.7 t ha-1, 1.2 t ha-1 and 2.3 t ha-1, respectively. About one fourth of the total arable land showed visible erosion damage. Maximum soil losses of about 70 t ha-1 occurred on individual farm plots. Average soil erosion patterns are widely used to underline the severity of an erosion problem (e.g. impacts on water bodies). But since severe rainfall events, wheel tracks, headlands, and other “singularities” often cause high erosion rates, analysis of extreme erosion patterns such as maximum values led to a more differentiated understanding and appropriate conclusions for planning and design of soil protection measures. The study contains an assessment of soil erosion in Switzerland, emphasizing questions about extent, frequency and severity. At the same time, the effects of different types of land management are investigated in the field, aiming at the development of meaningful impact indicators of (un-)sustainable agriculture/soil erosion risk as well as the validation of erosion models. The results illustrate that conservation agriculture including no-till, strip tillage and in-mulch seeding plays an essential role in reducing soil loss as compared to conventional tillage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the delta N-15 and delta C-13 isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Delta delta N-15 (delta N-15 plant - delta N-15 soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in delta C-13 in hay and delta C-13 in both soil and hay between management types, but showed that delta C-13 abundances were significantly lower in soil of organic compared to conventional grasslands. delta C-15 values implied that management types did not substantially differ in nitrogen cycling. Only delta C-13 in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Sehoul, Morocco, the use of marginal land for agriculture became a necessity for the local population due to increased poverty and the occupation of the best land by new owners. Desertification poses an additional threat to agricultural production on marginal slopes, which are often stony and degraded. In a participatory process embedded in the EU DESIRE research project, potential sustainable land management measures were selected to address land degradation and desertification. Promising experiences with no-tillage practices elsewhere in Morocco had motivated the Moroccan government to promote conservation agriculture throughout the country. This combination of crop rotation, minimal soil disturbance and soil cover maintenance, however, had not yet been tested on sloping degraded land. Field trials of grazing enclosure combined with no or minimum tillage were conducted on the plots of two farmers, and trial results were analyzed based on stakeholders’ criteria. Results suggest that increased soil cover with barley residues improved rainwater use efficiency and yields only slightly, although soil water was generally enhanced. Soil moisture measurements revealed that no-tillage was favorable mainly at soil depths of 5 cm and in connection with low-rainfall events (<20 mm); under these circumstances, moisture content was generally higher under no-tillage than under conventional tillage. Moreover, stakeholder discussion confirmed that farmers in Sehoul remain primarily interested in animal husbandry and are reluctant to change the current grazing system. Implementation of conservation agriculture is thus challenged both by the degraded, sloping and stony nature of the land, and by the socio-economic circumstances in Sehoul.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant–insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root–herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root–herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.