1000 resultados para slot line
Resumo:
Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.
Resumo:
This study presents a model based on partial least squares (PLS) regression for dynamic line rating (DLR). The model has been verified using data from field measurements, lab tests and outdoor experiments. Outdoor experimentation has been conducted both to verify the model predicted DLR and also to provide training data not available from field measurements, mainly heavily loaded conditions. The proposed model, unlike the direct measurement based DLR techniques, enables prediction of line rating for periods ahead of time whenever a reliable weather forecast is available. The PLS approach yields a very simple statistical model that accurately captures the physical performance of the conductor within a given environment without requiring a predetermination of parameters as required by many physical modelling techniques. Accuracy of the PLS model has been tested by predicting the conductor temperature for measurement sets other than those used for training. Being a linear model, it is straightforward to estimate the conductor ampacity for a set of predicted weather parameters. The PLS estimated ampacity has proven its accuracy through an outdoor experiment on a piece of the line conductor in real weather conditions.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.
Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.
Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.
Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.
Resumo:
We present an algebro-geometric approach to a theorem on finite domination of chain complexes over a Laurent polynomial ring. The approach uses extension of chain complexes to sheaves on the projective line, which is governed by a K-theoretical obstruction.
Resumo:
DC line faults on high-voltage direct current (HVDC) systems utilising voltage source converters (VSCs) are a major issue for multi-terminal HVDC systems in which complete isolation of the faulted system is not a viable option. Of these faults, single line-to-earth faults are the most common fault scenario. To better understand the system under such faults, this study analyses the behaviour of HVDC systems based on both conventional two-level converter and multilevel modular converter technology, experiencing a permanent line-to-earth fault. Operation of the proposed system under two different earthing configurations of converter side AC transformer earthed with converter unearthed, and both converter and AC transformer unearthed, was analysed and simulated, with particular attention paid to the converter operation. It was observed that the development of potential earth loops within the system as a result of DC line-to-earth faults leads to substantial overcurrent and results in oscillations depending on the earthing configuration.
Resumo:
An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.
Resumo:
Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation. © 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
TiO2 photocatalysis is a promising technology for the destruction of organic pollutants in both waste and potable waters with the mineralisation of a wide range of compounds having been reported. TiO 2 has many advantages over other semiconductors, it is highly photoreactive, cheap, non-toxic, chemically and biologically inert, and photostable. The photocatalytic activity of TiO2 has been shown to depend upon many criteria including the ratio of anatase/rutile crystal phase, particle size and oxidation state. This paper reports the use of optical surface second harmonic generation (SSHG) to monitor modifications in TiO 2 powder induced following laser treatment. SSHG is a non-contact, non-destructive technique, which is highly sensitive to both surface chemical and physical changes. Results show that three different SSH intensities were observable as the TiO2 samples were irradiated with the laser light. These regions were related to changes in chemical characteristics and particle size of the TiO2 powder
Resumo:
We analyze high temporal and spatial resolution time-series of spectralscans of the Hα line obtained with the CRisp Imaging SpectroPolarimeter instrument mounted on the Swedish Solar Telescope.The data reveal highly dynamic, dark, short-lived structures known asRapid Redshifted and Blueshifted Excursions (RREs, RBEs) that areon-disk absorption features observed in the red and blue wings ofspectral lines formed in the chromosphere. We study the dynamics of RREsand RBEs by tracking their evolution in space and time, measuring thespeed of the apparent motion, line of sight (LOS) Doppler velocity, andtransverse velocity of individual structures. A statistical study oftheir measured properties shows that RREs and RBEs have similaroccurrence rates, lifetimes, lengths, and widths. They also displaynon-periodic, nonlinear transverse motions perpendicular to their axesat speeds of 4-31 km s-1. Furthermore, both typesof structures either appear as high speed jets and blobs that aredirected outwardly from a magnetic bright point with speeds of50-150 km s-1, or emerge within a few seconds. Astudy of the different velocity components suggests that the transversemotions along the LOS of the chromospheric flux tubes are responsiblefor the formation and appearance of these redshifted/blueshiftedstructures. The short lifetime and fast disappearance of the RREs/RBEssuggests that, similar to type II spicules, they are rapidly heated totransition region or even coronal temperatures. We speculate that theKelvin-Helmholtz instability triggered by observed transversemotions of these structures may be a viable mechanism for their heating.