871 resultados para silicone derivative
Resumo:
Modern copyright law is based on the inescapable assumption that users, given the choice, will free-ride rather than pay for access. In fact, many consumers of cultural works – music, books, films, games, and other works – fundamentally want to support their production. It turns out that humans are motivated to support cultural production not only by extrinsic incentives, but also by social norms of fairness and reciprocity. This article explains how producers across the creative industries have used this insight to develop increasingly sophisticated business models that rely on voluntary payments (including pay-what-you-want schemes) to fund their costs of production. The recognition that users are not always free-riders suggests that current policy approaches to copyright are fundamentally flawed. Because social norms are so important in consumer motivations, the perceived unfairness of the current copyright system undermines the willingness of people to pay for access to cultural goods. While recent copyright reform debate has focused on creating stronger deterrence through enforcement, increasing the perceived fairness and legitimacy of copyright law is likely to be much more effective. The fact that users will sometimes willingly support cultural production also challenges the economic raison d'être of copyright law. This article demonstrates how 'peaceful revolutions' are flipping conventional copyright models and encouraging free-riding through combining incentives and prosocial norms. Because they provide a means to support production without limiting the dissemination of knowledge and culture, there is good reason to believe that these commons-based systems of cultural production can be more efficient, more fair, and more conducive to human flourishing than conventional copyright systems. This article explains what we know about free-riding so far and what work remains to be done to understand the viability and importance of cooperative systems in funding cultural production.
Resumo:
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.
Resumo:
Eleven new bisresorcinols including four mixtures each of two isomers and one resorcinol/phloroglucinol derivative, together with five known resorcinols have been isolated from the ethyl acetate extract of sterns of Grevillea whiteana. The new Compounds were identified as 4-(3-hydroxy-3-methylbutyl)grebustol-B (10a), 4'-(3-hydroxy-3-methylbutyl)grebustol-B (10b), 4-(4-hydroxy-3-methylbutyl)grebustol-B (2a) and 4'-(4-hydroxy-3-methylbutyl) rebustol-B (2b), 2,2-dimethyldihydropyrano grebustol-B (11a) and iso-2,2-dimethyldihydropyranogrebustol-B (11b), 2,2-dimethyl-3 xi-hydroxydihydropyranogrebustol-B (7a) and iso-2,2-dimethyl-3 xi-hydroxydihydropyranogrebustol-B (7b), 15-(2-(4-hydroxy-3-methylbutyl)-resorcinol-5-yl)-1-(phloroglucinolyl )-9(Z)pentadecen-one (whiteanone) (4), 5,5'-(hexadecan-diyl)bisresorcinol (12) and 2-methyl-5,5'-(8(Z)hexadecen-1,16-diyl)bisresorcinol (9). This is the first record of pyranobisresorcinols in the genus and the first report of a phloroglucinol terminal Phenolic unit in any Grevillea species.
Resumo:
This review will focus on the role of sphingosine and its phosphorylated derivative sphingosine-1-phosphate (SPP) in cell growth regulation and signal transduction. We will show that many of the effects attributed to sphingosine in quiescent Swiss 3T3 fibroblasts are mediated via its conversion to SPP. We propose that SPP has appropriate properties to function as an intracellular second messenger based on the following: it elicits diverse cellular responses; it is rapidly produced from sphingosine by a specific kinase and rapidly degraded by a specific lyase; its concentration is low in quiescent cells but increases rapidly and transiently in response to the growth factors, fetal calf serum (FCS) and platelet derived growth factor (PDGF); it releases Ca2+ from internal sources in an InsP3-independent manner; and finally, it may link sphingolipid signaling pathways to cellular ras-mediated signaling pathways by elevating phosphatidic acid levels. The effects of this novel second messenger on growth, differentiation and invasion of human breast cancer cells will be discussed. © 1994 Kluwer Academic Publishers.
Resumo:
Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.
Resumo:
In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.
Resumo:
Objective: To investigate the potential of inflammation to induce new adipose tissue formation in the in vivo environment. Methods and results: Using an established model of in vivo adipogenesis, a silicone chamber containing a Matrigel and fibroblast growth factor 2 (1 μg/ml) matrix was implanted into each groin of an adult male C57Bl6 mouse and vascularized with the inferior epigastric vessels. Sterile inflammation was induced in one of the two chambers by suspending Zymosan-A (ZA) (200-0.02 μg/ml) in the matrix at implantation. Adipose tissue formation was assessed at 6, 8, 12 and 24 weeks. ZA induced significant adipogenesis in an inverse dose-dependent manner (P<0.001). At 6 weeks adipose tissue formation was greatest with the lowest concentrations of ZA and least with the highest. Adipogenesis occurred both locally in the chamber containing ZA and in the ZA-free chamber in the contralateral groin of the same animal. ZA induced a systemic inflammatory response characterized by elevated serum tumour necrosis factor-α levels at early time points. Aminoguanidine (40 μg/ml) inhibited the adipogenic response to ZA-induced inflammation. Adipose tissue formed in response to ZA remained stable for 24 weeks, even when exposed to the normal tissue environment. Conclusions: These results demonstrate that inflammation can drive neo-adipogenesis in vivo. This suggests the existence of a positive feedback mechanism in obesity, whereby the state of chronic, low-grade inflammation, characteristic of the condition, may promote further adipogenesis. The mobilization and recruitment of a circulating population of adipose precursor cells is likely to be implicated in this mechanism.
Resumo:
An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigel™, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.
Resumo:
The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.
Resumo:
In the current era of global economic instability, business and industry have already identified a widening gap between graduate skills and employability. An important element of this is the lack of entrepreneurial skills in graduates. This Teaching Fellowship investigated two sides of a story about entrepreneurial skills and their teaching. Senior players in the innovation commercialisation industry, a high profile entrepreneurial sector, were surveyed to gauge their needs and experiences of graduates they employ. International contexts of entrepreneurship education were investigated to explore how their teaching programs impart the skills of entrepreneurship. Such knowledge is an essential for the design of education programs that can deliver the entrepreneurial skills deemed important by industry for future sustainability. Two programs of entrepreneurship education are being implemented at QUT that draw on the best practice exemplars investigated during this Fellowship. The QUT Innovation Space (QIS) focuses on capturing the innovation and creativity of students, staff and others. The QIS is a physical and virtual meeting and networking space; a connected community enhancing the engagement of participants. The Q_Hatchery is still embryonic; but it is intended to be an innovation community that brings together nascent entrepreneurial businesses to collaborate, train and support each other. There is a niche between concept product and business incubator where an experiential learning environment for otherwise isolated ‘garage-at-home’ businesses could improve success rates. The QIS and the Q_Hatchery serve as living research laboratories to trial the concepts emerging from the skills survey. The survey of skills requirements of the innovation commercialisation industry has produced a large and high quality data set still being explored. Work experience as an employability factor has already emerged as an industry requirement that provides employee maturity. Exploratory factor analysis of the skills topics surveyed has led to a process-based conceptual model for teaching and learning higher-order entrepreneurial skills. Two foundational skills domains (Knowledge, Awareness) are proposed as prerequisites which allow individuals with a suite of early stage entrepreneurial and behavioural skills (Pre-leadership) to further leverage their careers into a leadership role in industry with development of skills around higher order elements of entrepreneurship, management in new business ventures and progressing winning technologies to market. The next stage of the analysis is to test the proposed model through structured equation modelling. Another factor that emerged quickly from the survey analysis broadens the generic concept of team skills currently voiced in Australian policy documents discussing the employability agenda. While there was recognition of the role of sharing, creating and using knowledge in a team-based interdisciplinary context, the adoption and adaptation of behaviours and attitudes of other team members of different disciplinary backgrounds (interprofessionalism) featured as an issue. Most undergraduates are taught and undertake teamwork in silos and, thus, seldom experience a true real-world interdisciplinary environment. Enhancing the entrepreneurial capacity of Australian industry is essential for the economic health of the country and can only be achieved by addressing the lack of entrepreneurial skills in graduates from the higher education system. This Fellowship has attempted to address this deficiency by identifying the skills requirements and providing frameworks for their teaching.
Resumo:
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT(2B) receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT(2B) receptors to the reinforcing properties of MDMA. We show here that 5-HT(2B) (-/-) mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT(2B) receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT(2B) receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT(2B) receptor-independent behavioral effects. These results underpin the importance of 5-HT(2B) receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.
Resumo:
Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.
Resumo:
Background Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission. Methods Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured. Results Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73–0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room. Conclusions Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.
Resumo:
Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.
Resumo:
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.