987 resultados para silicon oxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the growth of epitaxial Co metal thin film on c-plane sapphire by pulsed laser deposition (RD) using Co:ZnO target utilizing the composition inhomogeneity of the corresponding plasma. Two distinct plasma composition regions have been observed using heavily alloyed Co0.6Zn0.4O target. The central and intense region of the plasma grows Co:ZnO film; the extreme tail grows only Co metal with no trace of either ZnO or Co oxide In between the two extremes, mixed phases (Co +Co-oxides +Co:ZnO) were observed. The Co metal thin film grown in this way shows room temperature ferromagnetism with large in plane magnetization similar to 1288 emu cm(-3) and a coerciviLy of similar to 230 Oe with applied field parallel to the film-substrate interface. Carrier density of the film is similar to 10(22) cm(-3). The film is epiLaxial single phase Co metal which is confirmed by both X-ray diffraction and transmission electron microscopy characierizaLions. Planar Hall Effect (PHE) and Magneto Optic Kerr Effect (MOKE) measurements confirm that the film possesses similar attributes of Co metal. The result shows that the epiLaxial Co metal thin film can be grown from its oxides in the PLD. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si: P and Ge: P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-prepared graphene oxide (GO) contains oxidative debris which can be washed using basic solutions. We present the isolation and characterization of these debris. Dynamic light scattering (DLS) is used to monitor the separation of the debris in various solvents in the presence of different protic and aprotic alkylamino bases. The study reveals that the debris are rich in carbonyl functional groups and water is an essential component for separation and removal of the debris from GO under oxidative reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layered ternary chalcogenide, palladium phosphorous sulphide (PdPS), and its composite with reduced graphene oxide are shown to be efficient hydrogen evolution electrocatalysts. The Tafel slope and the exchange current density values associated with hydrogen evolution reaction are determined to be 46 mV dec(-1) and 1.4 x 10(-4) A cm(-2) respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation transparent conducting properties of as-deposited and annealed ZnO:Sn:F films deposited using different spray flux density by changing the solvent volume (10 mL, 20 mL ... 50 mL) of the starting solutions have been studied and reported. The structural analyses of the films indicate that all the films have hexagonal wurtzite structure of ZnO with preferential orientation along (002) plane irrespective of the solvent volume and annealing treatment whereas, the overall crystalline quality of the films is found to be enhanced with the increase in solvent volume as well as with annealing. This observed enhancement is strongly supported by the optical and surface morphological results. From the measurements of electrical parameters, it is seen that, the annealed films exhibit better electrical properties compared to the as-deposited ones. Annealing has caused agglomeration of grains as confirmed by the surface morphological studies. Also, the annealing process has led to an improvement in the optical transparency as well as band gap. It is found from the analyses of the characteristics of the as- deposited and annealed films that the annealed film deposited from starting solution having solvent volume of 50 mL is optimal in all respects, as it possesses all the desirable characteristics including the quality factor (1.60 x 10(-4) (Omega/sq.)(-1)). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation between gas sensing properties and defect induced Room Temperature Ferromagnetism (RTFM) is demonstrated in non-stoichiometric SnO2 prepared by solution combustion method. The presence of oxygen vacancies (V-O), confirmed by RTFM is identified as the primary factor for enhanced gas sensing effect. The as-prepared SnO2 shows high saturation magnetization of similar to 0.018 emu/g as compared to similar to 0.002 and similar to 0.0005 emu/g in annealed samples and SnO2 prepared by precipitation respectively. The SnO2 prepared by precipitation which is an equilibrium method of synthesis shows lesser defects compared to the combustion product and hence exhibits lesser sensitivity in spite of smaller crystallite size. The study utilizes RTFM as a potential tool to characterize metal oxide gas sensors and recognizes the significance of oxygen vacancies in sensing mechanism over the microstructure. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the fabrication and characterization of Ti and Au coated hollow silicon microneedles for transdermal drug delivery applications. The hollow silicon microneedles are fabricated using isotropic etching followed by anisotropic etching to obtain a tapered tip. Silicon microneedle of 300 mu m in height, with 130 mu m outer diameter and 110 mu m inner diameter at the tip followed by 80 mu m inner diameter and 160 mu m outer diameter at the base have been fabricated. In order to improve the biocompatibility of microneedles, the fabricated microneedles were coated with Ti (500 nm) by sputtering technique followed by gold coating using electroplating. A breaking force of 225 N was obtained for the fabricated microneedles, which is 10 times higher than the skin resistive force. Hence, fabricated microneedles can easily be inserted inside the skin without breakage. The fluid flow through the microneedles was studied for different inlet pressures. A minimum inlet pressure of 0.66 kPa was required to achieve a flow rate of 50 mu l in 2 s with de-ionized water as a fluid medium. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a framework for realizing arbitrary instruction set extensions (IE) that are identified post-silicon. The proposed framework has two components viz., an IE synthesis methodology and the architecture of a reconfigurable data-path for realization of the such IEs. The IE synthesis methodology ensures maximal utilization of resources on the reconfigurable data-path. In this context we present the techniques used to realize IEs for applications that demand high throughput or those that must process data streams. The reconfigurable hardware called HyperCell comprises a reconfigurable execution fabric. The fabric is a collection of interconnected compute units. A typical use case of HyperCell is where it acts as a co-processor with a host and accelerates execution of IEs that are defined post-silicon. We demonstrate the effectiveness of our approach by evaluating the performance of some well-known integer kernels that are realized as IEs on HyperCell. Our methodology for realizing IEs through HyperCells permits overlapping of potentially all memory transactions with computations. We show significant improvement in performance for streaming applications over general purpose processor based solutions, by fully pipelining the data-path. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on glass and silicon (100) substrates by the sol-gel method. The influence of film thickness and annealing temperature on optical transmittance/reflectance of TiO2 films was studied. TiO2 films were used to fabricate metal-oxide-semiconductor capacitors. The capacitance-voltage (C-V), dissipation-voltage (D-V) and current-voltage (I-V) characteristics were studied at different annealing temperatures and the dielectric constant, current density and resistivity were estimated. The loss tangent (dissipation) increased with increase of annealing temperature.