919 resultados para shrubland ecosystem
Resumo:
Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.
Resumo:
In this article, I offer an institutional history of the ecosystem concept, tracing shifts in its meaning and application as it has become the key organizing principle for the Everglades restoration program in Florida. Two institutional forms are analyzed here: (1) quasigovernmental organizations, a term I use to describe interagency science collaboratives and community stakeholder organizations, and (2) government bureaucracies, which are the administrative agencies tasked with Everglades restoration planning and implementation. In analyzing these knowledge trajectories, I both document the complex networks of relations that facilitate the ecosystem’s emergence as an object of knowledge and examine the bureaucratic claims to authority that circumscribe the ecosystem’s transformation into policy.
Resumo:
1. Our goal was to quantify short-term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P-limited Everglades marshes. 32PO4 was added to the water column in six 1-m2 enclosed mesocosms located in long-hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 μm) incorporated radiotracer within the first minute after dosing and stored 95–99% of total water column 32P activity throughout the study. Soluble (<0.45 μm) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g−131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca-associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 day incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short-term P cycling in this oligotrophic ecosystem.
Resumo:
Natural, unenriched Evergladeswetlands are known to be limited by phosphorus(P) and responsive to P enrichment. However,whole-ecosystem evaluations of experimental Padditions are rare in Everglades or otherwetlands. We tested the response of theEverglades wetland ecosystem to continuous,low-level additions of P (0, 5, 15, and30 μg L−1 above ambient) in replicate,100 m flow-through flumes located in unenrichedEverglades National Park. After the first sixmonths of dosing, the concentration andstanding stock of phosphorus increased in thesurface water, periphyton, and flocculentdetrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean =149 μg P g−1), while the flocculentdetrital layer stored most of the accumulated P(30 μg L−1: mean = 1.732 g P m−2,control: mean = 0.769 g P m−2). Significant short-term responsesof P concentration and standing stock wereobserved primarily in the high dose (30 μgL−1 above ambient) treatment. Inaddition, the biomass and estimated P standingstock of aquatic consumers increased in the 30and 5 μg L−1 treatments. Alterationsin P concentration and standing stock occurredonly at the upstream ends of the flumes nearestto the point source of added nutrient. Thetotal amount of P stored by the ecosystemwithin the flume increased with P dosing,although the ecosystem in the flumes retainedonly a small proportion of the P added over thefirst six months. These results indicate thatoligotrophic Everglades wetlands respondrapidly to short-term, low-level P enrichment,and the initial response is most noticeable inthe periphyton and flocculent detrital layer.
Resumo:
Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.
Resumo:
This paper relates key elements of andragogy (Knowles, 1970, 1984) to the intellectual origins of the Internet. Common to both are the principles of access, voluntary participation, self-direction, and learning webs. New opportunities for adult learners and educators in the emergent information ecosystem are discussed.
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Resumo:
Tree islands are an important structural component of many graminoid-dominated wetlands because they increase ecological complexity in the landscape. Tree island area has been drastically reduced with hydrologic modifications within the Everglades ecosystem, yet still little is known about the ecosystem ecology of Everglades tree islands. As part of an ongoing study to investigate the effects of hydrologic restoration on short hydroperiod marshes of the southern Everglades, we report an ecosystem characterization of seasonally flooded tree islands relative to locations described by variation in freshwater flow (i.e. locally enhanced freshwater flow by levee removal). We quantified: (1) forest structure, litterfall production, nutrient utilization, soil dynamics, and hydrologic properties of six tree islands and (2) soil and surface water physico-chemical properties of adjacent marshes. Tree islands efficiently utilized both phosphorus and nitrogen, but indices of nutrient-use efficiency indicated stronger P than N limitation. Tree islands were distinct in structure and biogeochemical properties from the surrounding marsh, maintaining higher organically bound P and N, but lower inorganic N. Annual variation resulting in increased hydroperiod and lower wet season water levels not only increased nitrogen use by tree species and decreased N:P values of the dominant plant species (Chrysobalanus icaco), but also increased soil pH and decreased soil temperature. When compared with other forested wetlands, these Everglades tree islands were among the most nutrient efficient, likely a function of nutrient immobilization in soils and the calcium carbonate bedrock. Tree islands of our study area are defined by: (1) unique biogeochemical properties when compared with adjacent short hydroperiod marshes and other forested wetlands and (2) an intricate relationship with marsh hydrology. As such, they may play an important and disproportionate role in nutrient and carbon cycling in Everglades wetlands. With the loss of tree islands that has occurred with the degradation of the Everglades system, these landscape processes may have been altered. With this baseline dataset, we have established a long-term ecosystem-scale experiment to follow the ecosystem trajectory of seasonally flooded tree islands in response to hydrologic restoration of the southern Everglades.
Resumo:
Shallow seagrass ecosystems frequently experience physical disturbance from vessel groundings. Specific restoration methods that modify physical, chemical, and biological aspects of disturbances are used to accelerate recovery. This study evaluated loss and recovery of ecosystem structure in disturbed seagrass meadows through plant and soil properties used as proxies for primary and secondary production, habitat quality, benthic metabolism, remineralization, and nutrient storage and exchange. The efficacy of common seagrass restoration techniques in accelerating recovery was also assessed. Beyond removal of macrophyte biomass, disturbance to seagrass sediments resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal communities. Evidence of the effectiveness of restoration actions was variable. Fill placement prevented additional erosion, but the resulting sediment matrix had different physical properties, low organic matter content and nutrient pools, reduced benthic metabolism, and less primary and secondary production relative to the undisturbed ecosystem. Fertilization was effective in increasing nitrogen and phosphorus availability in the sediments, but concurrent enhancement of seagrass production was not detected. Seagrass herbivores removed substantial seagrass biomass via direct grazing, suggesting that leaf loss to seagrass herbivores is a spatially variable but critically important determinant of seagrass transplanting success. Convergence of plant and sediment response variables with levels in undisturbed seagrass meadows was not detected via natural recovery of disturbed sites, or through filling and fertilizing restoration sites. However, several indicators of ecosystem development related to primary production and nutrient accumulation suggest that early stages of ecosystem development have begun at these sites. This research suggests that vessel grounding disturbances in seagrass ecosystems create more complex and persistent resource losses than previously understood by resource managers. While the mechanics of implementing common seagrass restoration actions have been successfully developed by the restoration community, expectations of consistent or rapid recovery trajectories following restoration remain elusive.
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas)—one of the most abundant large-bodied herbivores in Shark Bay—appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities—and possibly ecosystems—through non-consumptive pathways.
Resumo:
The Everglades Online Thesaurus is a structured vocabulary of concepts and terms relating to the south Florida environment. Designed as an information management tool for both researchers and metadata creators, the Thesaurus is intended to improve information retrieval across the many disparate information systems, databases, and web sites that provide Everglades-related information. The vocabulary provided by the Everglades Online Thesaurus expresses each relevant concept using a single ‘preferred term’, whereas in natural language many terms may exist to express that same concept. In this way, the Thesaurus offers the possibility of standardizing the terminology used to describe Everglades-related information — an important factor in predictable and successful resource discovery.
Resumo:
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world's largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people's values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict. My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region's history and contemporary conflicts are shaped by the broader political economy of development in south Florida. My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
Resumo:
Trophic downgrading of ecosystems necessitates a functional understanding of trophic cascades. Identifying the presence of cascades, and the mechanisms through which they occur, is particularly important for seagrass meadows, which are among the most threatened ecosystems on Earth. Shark Bay, Western Australia provides a model system to investigate the potential importance of top-down effects in a relatively pristine seagrass ecosystem. The role of megagrazers in the Shark Bay system has been previously investigated, but the role of macrograzers (i.e., teleosts), and their importance relative to megagrazers, remains unknown. The objective of my dissertation was to elucidate the importance of teleost macrograzers in transmitting top-down effects in seagrass ecosystems. Seagrasses and macroalgae were the main food of the abundant teleost Pelates octolineatus, but stable isotopic values suggested that algae may contribute a larger portion of assimilated food than suggested by gut contents. Pelates octolineatus is at risk from numerous predators, with pied cormorants (Phalacrocorax varius) taking the majority of tethered P. octolineatus. Using a combination of fish trapping and unbaited underwater video surveillance, I found that the relative abundance of P. octolineatus was greater in interior areas of seagrass banks during the cold season, and that the mean length of P. octolineatus was greater in these areas compared to along edges of banks. Finally, I used seagrass transplants and exclosure experiments to determine the relative effect of megagrazers and macrograzers on the establishment and persistence of three species of seagrasses in interior microhabitats. Teleost grazing had the largest impact on seagrass species with the highest nutrient content, and these impacts were primarily observed during the warm season. My findings are consistent with predictions of a behaviorally-mediated trophic cascade initiated by tiger sharks (Galeocerdo cuvier) and transmitted through herbivorous fishes and their predators.
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis ) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.