921 resultados para self-formed quantum dot


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial InAs growth on InP(1 0 0) during molecular beam epitaxy has been investigated. The as-grown islands were shaped like nanowires and formed dense arrays over the entire surface in the 3-6 monolayer InAs deposition range. The wires were oriented along the [(1) over bar 1 0] direction. Transmission electron microscopy images confirm that the wires are coherently grown on the substrates. Our results suggest that the coherent wire-shaped island formation may be a possible method to fabricate self-organized InAs nanowires. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the structural and optical characteristics of InAs quantum dots (QDs) grown on GaAs (311)A substrates. Atomic force microscopic result shows that QDs on (311)A surface exhibit a nonconventional, faceted, arrowhead-like shapes aligned in the [233] direction. The photoluminescence (PL) intensity, peak position and the full width at half maxinum (FWHM) are all closely related to the measurement temperature. The fast redshift of PL energy and monotonous decrease of linewidth with increasing temperature were observed and explained by carriers being thermally activated to the barrier produced by the wetting layer and then being retrapped and recombined in energetically lower-lying QDs states. This model explains our results well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a newly-developed population mixing technique we have studied the exciton dynamics in self-organized InAs/GaAs quantum dots (QDs). It is found that the exciton lifetime in self-organized InAs/GaAs QDs is around 1 ns, almost independent of InAs layer thickness. The temperature dependence of the exciton lifetime varies from sample to sample, but no obvious experimental evidence was found that the lifetime is related to the delta-function of density of states in QDs. We have also found that the population mixing technique can be used to directly reveal the band-filling effect in the excited states of the QDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the height of quantum dots. Uniformity of quantum dots has been enhanced because the full-width of half-maximum of photoluminescence decrease from 80 to 27 meV in these samples as the interruption time is increased. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time, which can be used to modulate energy level of quantum dots. All of the phenomenon mentioned above can be attributed to the diffusion of In atoms from the tops of InAs islands to the top of GaAs cap layer caused by the difference between the surface energies of InAs and GaAs. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organized InAs islands on (001) GaAs grown by molecular beam epitaxy were annealed and characterized with photoluminescence (PL) and transmission electron microscopy (TEM). The PL spectra from the InAs islands demonstrated that annealing resulted in a blueshift in peak energy, a reduction in intensity, and a narrower linewidth in the PL peak. In addition, the TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 degrees dislocations. The correlation between the changes in the PL spectra and the relaxation of strain in InAs islands was discussed. (C) 1998 American Institute of Physics. [S0003-6951(98)01850-6].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep Level Transient Spectroscopy (DLTS) has been applied to investigate the electronic properties of self-organized InAs quantum dots. The energies of electronic ground states of 2.5ML and 1.7ML InAs quantum dots (QDs) with respect to the conduction band of bulk GaAs are about 0.21 eV and 0.09 eV, respectively. We have found that QDs capture electrons by lattice relaxation through a multi-phonon emission process. The samples are QDs embedded in superlattices with or without a 500 Angstrom GaAs spacing layer between every ten periods of a couple of GaAs and InAs layers. The result shows that the density of dislocations in the samples with spacer layers is much lower than in the samples without the spacer layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of GaAs/InAs/GaAs samples were studied by double crystal X-ray diffraction and the X-ray dynamic theory was used to analyze the X-ray diffraction results. As the thickness of InAs layer exceeds 1.7 monolayer, 3-dimensional InAs islands appear. Pendellosung fringes shifted. A multilayer structure model is proposed to describe the strain status in the InAs islands of the sample and a good agreement is obtained between the experimental and theoretical curves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Morphology evolution of high-index (331)A surfaces during molecular beam epitaxy (MBE) growth have been investigated in order to uncover their unique physic properties and fabricate spatially ordered low dimensional nanostructures. Atomic Force Microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature in conventional MBE. However, this situation is reversed in atomic hydrogen-assisted MBE, indicating that step bunching is partly suppressed. We attribute this to the reduced surface migration length of Ga adatoms with atomic hydrogen. By using the step arrays formed on GaAs (331)A surfaces as the templates, we fabricated laterally ordered InGaAs self-aligned nanowires.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.