867 resultados para seawater adaptation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: the aim of this investigation was to evaluate the cervical adaptation of metal crowns under several conditions, namely (1) variations in the cervical finish line of the preparation, (2) application of internal relief inside the crowns, and (3) cementation using different luting materials. Method and Materials: One hundred eighty stainless-steel master dies were prepared simulating full crown preparations: 60 in chamfer (CH), 60 in 135-degree shoulder (OB), and 60 in rounded shoulder (OR). The finish lines were machined at approximate dimensions of a molar tooth preparation (height: 5.5 mm; cervical diameter: 8 mm; occlusal diameter: 6.4 mm; taper degree: 6; and cervical finish line width: 0.8 mm). One hundred eighty corresponding copings with the same finish lines were fabricated. A 30-mu m internal relief was machined 0.5 mm above the cervical finish line in 90 of these copings. The fit of the die and the coping was measured from all specimens (L0) prior to cementation using an optical microscope. After manipulation of the 3 types of cements (zinc phosphate, glass-ionomer, and resin cement), the coping was luted on the corresponding standard master die under 5-kgf loading for 4 minutes. Vertical discrepancy was again measured (L1), and the difference between L1 and L0 indicated the cervical adaptation. Results: Significant influence of the finish line, cement type, and internal relief was observed on the cervical adaptation (P < .001). The CH type of cervical finish line resulted in the best cervical adaptation of the metal crowns regardless of the cement type either with or without internal relief (36.6 +/- 3 to 100.8 +/- 4 mu m) (3-way analysis of variance and Tukey's test, alpha = .05). The use of glass-ionomer cement resulted in the least cervical discrepancy (36.6 +/- 3 to 115 +/- 4 mu m) than those of other cements (45.2 +/- 4 to 130.3 +/- 2 mu m) in all conditions. Conclusion: the best cervical adaptation was achieved with the chamfer type of finish line. The internal relief improved the marginal adaptation significantly, and the glass-ionomer cement led to the best cervical adaptation, followed by zinc phosphate and resin cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To validate the platform switching concept at oral implants with respect to the preservation of the alveolar crestal bone levels in an animal model. Material & methods: Five minipigs received three implants each with a 0.25mm implant/ abutment mismatch and were placed flush (T(0)), 1 mm below (T(1)) and 1 mm above (T(+1)) the alveolar bony crest, and as a control, one conventionally restored implant placed at the bone level. The implants were randomly inserted flapless into the mandible. Four months after implant insertion, the animals were sacrificed, and undecalcified block sections were obtained and used for histological analyses. Results: The mean values for peri- implant bone resorption were 1.09 +/- 0.59mm (Control), 0.51 (+/- 0.27 mm, T(0)), 0.50 (+/- 0.46 mm, T(1)) and 1.30 (+/- 0.21 mm, T (+1)), respectively. Statistically significant differences (P< 0.05) were found among the test (T(0), T(-1)) and the control sites. Control implants presented an average biologic width length of 3.20mm (+/- 0.33), with a connective tissue adaptation compartment of 1.29mm (+/- 0.53) and an epithelial attachment of 1.91 mm (+/- 0.71). T(0), T(1) and T(+1) implants presented with a mean biologic width of 1.97mm (+/- 1.20), 2.70 mm (+/- 1.36) and 2.84mm (+/- 0.90), respectively, with a connective tissue adaptation compartment of 1.21mm (+/- 0.97), 1.21 mm (+/- 0.65) and 1.50 mm (+/- 0.70) and an epithelial attachment of 0.84 mm (+/- 0.93), 1.66 mm (+/- 0.88) and 1.35 mm (+/- 0.44), respectively. Differences between the configurations were mainly associated with the length of the epithelial attachment. The epithelial attachment was significantly longer in the C sites than in T(0) (P = 0.014). However, no other differences between configurations were detected. Conclusion: If the implants are positioned at the level of the alveolar bony crest, the platform switching concept may have a minor impact on the length of the epithelial attachment (0.84 vs. 1.91 mm), while the connective tissue adaptation compartment remains relatively unaffected. Moreover, platform switching resulted in less resorption of the alveolar crest (0.58 mm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study tested the null hypothesis that different treatments of saliva-contaminated substrate would not affect microgap formation at the dentin walls of bonded restorations. Materials and Methods: Forty freshly extracted human molars received standardized Class V preparations on buccal and lingual surfaces. The specimens were assigned to four experimental groups (n = 20): [G1] no contamination (control group), [G2] saliva contamination (10 s) after etching followed by 5 s air stream; [G3] saliva contamination after etching and rinsed for 10 s; and [G4] re-etching for 10 s after saliva contamination. All specimens were restored with a one-bottle adhesive (Single Bond, 3M ESPE) and microhybrid composite resin (Filtek Z250, 3M ESPE) according to the manufacturer's instructions. The specimens were thermocycled, sectioned through the center of the restoration, and then processed for SEM. Microgaps were measured at the axial wall at 1500X magnification. The data were submitted to Kruskal-Wallis nonparametric statistical analysis at p < 0.05. Results: The data revealed that different groups resulted in a statistically significant difference (p < 0.01) in gap formation. Air drying [G2] and rinsing [G3] the saliva-contaminated dentin resulted in similar microgap values (p > 0.05). However, re-etching the dentin after saliva contamination [G4] increased microgap formation (p < 0.05) when compared with the groups G1 and G2. Although air drying and rinsing produced results comparable to noncontaminated dentin, the presence of microgaps was not completely eliminated. Conclusion: Contaminated saliva did not prevent hybrid layer formation; however, it did reduce the adaptation of the restorative material to bonded surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.