955 resultados para sandstone reservoir
Resumo:
Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horse-shoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.
Resumo:
Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation habitat fragmentation, and urbanization; such factors increase the interface and or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
Resumo:
On arriving at the University of Queensland, I walked from where the taxi dropped me off towards the Great Court. As I walked I could see the carvings in the sandstone on the façade of the building in front of me. The carvings depict images of land, flora, fauna, settlers, and us. In the corner of my right sight of vision, I could see Mayne Hall. My mind flicked back in what was an instant to a time 30 plus years ago. I remember putting on some of my best clothes when my family would travel form the suburb of Inala to the Alumni book fair held in the Hall. We needed to act ‘discrete’ and like we were ‘meant to be there’. Members of my family would work hard to save money to buy the books that had far more substance than the books at our local community or school library. This was my first interaction with the University of Queensland. On the first day of Courting Blakness, I walked towards and then into the Great Court. I began to explore and engage with the artworks and allow them to engage with me. I was conscious of being in the University of Queensland as I had been on all my past visits. I was conscious of the public and the private aspects of the artworks along with the public observance and surveillance of the viewers of the artworks. The contradictions and struggles that Aboriginal and Torres Strait Islander people experience are everywhere when moving in spaces and places, including universities. They contain prevailing social, political and economic values in the same way that other places do. The symbols of place and space within universities are never neutral, and they can work to either marginalise and oppress Aboriginal and Torres Strait Islander people, or demonstrate that they are included and engaged. The artworks in the Great Court were involved in this matrix of mixed messages and the weaves of time contained the borders of the Court and within the minds of those present.
Resumo:
An integrated approach to energy planning, when applied to large hydroelectric projects, requires that the energy-opportunity cost of the land submerged under the reservoir be incorporated into the planning methodology. Biomass energy lost from the submerged land has to be compared to the electrical energy generated, for which we develop four alternative formulations of the net-energy function. The design problem is posed as an LP problem and is solved for two sites in India. Our results show that the proposed designs may not be viable in net-energy terms, whereas a marginal reduction in the generation capacity could lead to an optimal design that gives substantial savings in the submerged area. Allowing seasonal variations in the hydroelectric generation capacity also reduces the reservoir size. A mixed hydro-wood generation system is then examined and is found to be viable.
Resumo:
l-r: Martin Lipschitz, Sam Kohn, Hermann Judey, Willy Lipschitz, Georg Eliasberg and Jacob Judey-Barosin
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
Background: Betaretroviruses infect a wide range of species including primates, rodents, ruminants, and marsupials. They exist in both endogenous and exogenous forms and are implicated in animal diseases such as lung cancer in sheep, and in human disease, with members of the human endogenous retrovirus-K (HERV-K) group of endogenous betaretroviruses (βERVs) associated with human cancers and autoimmune diseases. To improve our understanding of betaretroviruses in an evolutionarily distinct host species, we characterized βERVs present in the genomes and transcriptomes of mega- and microbats, which are an important reservoir of emerging viruses.Results: A diverse range of full-length βERVs were discovered in mega- and microbat genomes and transcriptomes including the first identified intact endogenous retrovirus in a bat. Our analysis revealed that the genus Betaretrovirus can be divided into eight distinct sub-groups with evidence of cross-species transmission. Betaretroviruses are revealed to be a complex retrovirus group, within which one sub-group has evolved from complex to simple genomic organization through the acquisition of an env gene from the genus Gammaretrovirus. Molecular dating suggests that bats have contended with betaretroviral infections for over 30 million years.Conclusions: Our study reveals that a diverse range of betaretroviruses have circulated in bats for most of their evolutionary history, and cluster with extant betaretroviruses of divergent mammalian lineages suggesting that their distribution may be largely unrestricted by host species barriers. The presence of βERVs with the ability to transcribe active viral elements in a major animal reservoir for viral pathogens has potential implications for public health. © 2013 Hayward et al.; licensee BioMed Central Ltd.
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Multiple Trichinella species are reported from the Australasian region although mainland Australia has never confirmed an indigenous case of Trichinella infection in humans or animals. Wildlife surveys in high-risk regions are essential to truly determine the presence or absence of Trichinella, but in mainland Australia are largely lacking. In this study, a survey was conducted in wild pigs from mainland Australia's Cape York Peninsula and Torres Strait region for the presence of Trichinella, given the proximity of a Trichinella papuae reservoir in nearby PNG. We report the detection of a Trichinella infection in a pig from an Australian island in the Torres Strait, a narrow waterway that separates the islands of New Guinea and continental Australia. The larvae were characterised as T. papuae (Kikori strain) by PCR and sequence analysis. No Trichinella parasites were found in any pigs from the Cape York Peninsula. These results highlight the link the Torres Strait may play in providing a passage for introduction of Trichinella parasites from the Australasian region to the Australian mainland. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.
Resumo:
Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Nino Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
Nipah virus causes periodic livestock and human disease with high case fatality rate, and consequent major economic, social and psychological impacts. Fruit bats of the genus Pteropus are the natural reservoir. In this study, we used real time PCR to screen the saliva and urine of P. vampyrus from North Sumatera for Nipah virus genome. A conventional reverse transcriptase (RT-PCR) assay was used on provisionally positive samples to corroborate findings. This is the first report of Nipah virus detection in P. vampyrus in Sumatera, Indonesia.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.